Please wait a minute...
Advanced Search
数据分析与知识发现  2022, Vol. 6 Issue (11): 111-125     https://doi.org/10.11925/infotech.2096-3467.2022.0090
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于因果分析图的城市交通流短时预测研究*
王洁1,高原2(),张蕾1,马力文3,冯筠1
1西北大学信息科学与技术学院 西安 710127
2西北大学经济管理学院 西安 710127
3西北大学网络和数据中心 西安 710127
Predicting Short-Term Urban Traffics Based on Causality Analysis Graph
Wang Jie1,Gao Yuan2(),Zhang Lei1,Ma Liwen3,Feng Jun1
1School of Information Science & Technology, Northwest University, Xi’an 710127, China
2School of Economics & Management, Northwest University, Xi’an 710127, China
3Network and Data Center, Northwest University, Xi’an 710127, China
全文: PDF (3057 KB)   HTML ( 16
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 有效地挖掘区域之间复杂的空间作用关系机制,提高短时交通流预测精度。【方法】 提出一种新的图神经网络模型,该模型融合区域功能相似性矩阵与因果关系矩阵,按照“交通时序因果关系挖掘→时空特征提取→未来状态预测”的逻辑进行预测建模,训练图神经网络捕获区域内流量的时空依赖性特征,从而实现交通流量预测。【结果】 在成都市滴滴出行数据集上进行实验分析,结果表明所提模型较其他8种基线模型效果均有一定的提升,相较于最优基线模型,在RMSE及MAE值上分别降低了3.098%和4.783%。【结论】 交通时序因果图可以同时融合传统方法中通常需要考虑的空间距离关系特征、道路连通性特征、功能相似性特征等,且因果关系的引入能在一定程度上提升区域交通流的预测性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王洁
高原
张蕾
马力文
冯筠
关键词 短时交通流预测交通时序因果图时空数据图神经网络    
Abstract

[Objective] This paper examines the complex spatial interaction mechanism between regions, aiming to effectively predict short-term traffic flow. [Methods] Based on the graph neural network, we proposed a new predictive model, which integrated the regional functional similarity matrix and the causality matrix. Then, we developed a training strategy of “Mining traffic time series causal relationship → Extracting Spatio-temporal features → Predicting traffic flows”. Third, we predicted the traffic flows by capturing the spatio-temporal dependence characteristics of regional traffic. [Results] We tested the proposed model with Didi Chuxing data set from Chengdu. Compared with the optimal baseline model, the RMSE and MAE values were reduced by 3.098% and 4.783%, respectively. [Conclusions] The causal diagram for traffic sequence can simultaneously integrate the features of spatial distance relationships, road connectivity, and function similarities. With the help of causal relationships, the proposed model could effectively predict regional traffic flows.

Key wordsShort-Term Traffic Flow Prediction    Traffic Time Series Cause and Effect Diagram    Spatio-Temporal Data    Graph Neural Network
收稿日期: 2022-01-30      出版日期: 2023-01-13
ZTFLH:  U491  
基金资助:* 国家社会科学基金面上项目(20BTJ047)
通讯作者: 高原     E-mail: Yuangao@nwu.edu.cn
引用本文:   
王洁,高原,张蕾,马力文,冯筠. 基于因果分析图的城市交通流短时预测研究*[J]. 数据分析与知识发现, 2022, 6(11): 111-125.
Wang Jie,Gao Yuan,Zhang Lei,Ma Liwen,Feng Jun. Predicting Short-Term Urban Traffics Based on Causality Analysis Graph. Data Analysis and Knowledge Discovery, 2022, 6(11): 111-125.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022.0090      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2022/V6/I11/111
Fig.1  城市交通流量在区域之间的空间依赖性分类
Fig.2  城市区域交通中存在的因果效应示意图
Fig.3  交通时序有向无环图示意图
Fig.4  ST-CAG模型框架
Fig.5  图卷积神经网络结构
Fig.6  循环神经网络GRU结构
方法 时间特征 空间特征 因果特征
ARIMA
SARIMA
SVR
LSTM
GRU
ConvLSTM
DCRNN
T-GCN
ST-CAG(本文)
Table 1  各种模型考虑的特征对比
Fig.7  不同的目标区域与其具有因果关系的区域空间可视化
Fig.8  目标时间序列与原因/非原因时间序列对比
区域 v g r e e n v y e l l o w
v 227 0.847 0.642
v 388 0.816 0.922
Table 2  不同区域之间的功能相似度
Fig.9  上游区域集合与对应目标区域之间每类POI的分布差异性统计
Fig.10  不同阈值组合下生成的TCG对应的邻接矩阵关系图
方法 5分钟 10分钟 15分钟
MAE RMSE MAE RMSE MAE RMSE
ARIMA 29.105 32.827 29.301 32.982 29.511 33.010
SARIMA 28.235 32.297 28.239 32.298 28.240 32.298
SVR 12.079 17.195 12.582 17.524 12.915 17.957
LSTM 11.558 15.932 11.984 16.532 12.289 16.991
GRU 11.165 15.915 11.581 16.447 11.805 16.862
ConvLSTM 11.359 16.583 11.735 16.905 11.955 16.997
DCRNN 11.263 16.465 11.619 16.617 11.892 16.918
T-GCN 13.525 18.578 13.531 18.602 13.551 18.630
ST-CAG(本文) 10.631 15.422 10.955 15.951 11.361 16.419
Table 3  ST-CAG模型与其他模型预测精度对比
Fig.11  消融实验
[1] Song C, Lin Y F, Guo S N, et al. Spatial-Temporal Synchronous Graph Convolutional Networks: A New Framework for Spatial-Temporal Network Data Forecasting[C]// Proceedings of the AAAI Conference on Artificial Intelligence, 2020, 34(1): 914-921.
[2] Molavipour S, Bassi G, Čičić M, et al. Causality Graph of Vehicular Traffic Flow[OL]. arXiv Preprint, arXiv: 2011.11323.
[3] Lv M Q, Hong Z X, Chen L, et al. Temporal Multi-Graph Convolutional Network for Traffic Flow Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2021, 22(6): 3337-3348.
doi: 10.1109/TITS.2020.2983763
[4] Zhang J B, Zheng Y, Qi D K. Deep Spatio-Temporal Residual Networks for Citywide Crowd Flows Prediction[C]// Proceedings of the 31st AAAI Conference on Artificial Intelligence. 2017: 1655-1661.
[5] Pearl J, MacKenzie D. The Book of Why: The New Science of Cause and Effect[M]. New York: Basic Books, 2018.
[6] Williams B M, Hoel L A. Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results[J]. Journal of Transportation Engineering, 2003, 129(6): 664-672.
doi: 10.1061/(ASCE)0733-947X(2003)129:6(664)
[7] Drucker H, Burges C J C, Kaufman L, et al. Support Vector Regression Machines[C]// Proceedings of the 9th International Conference on Neural Information Processing Systems. 1996: 155-161.
[8] Guo S N, Lin Y F, Li S J, et al. Deep Spatial-Temporal 3D Convolutional Neural Networks for Traffic Data Forecasting[J]. IEEE Transactions on Intelligent Transportation Systems, 2019, 20(10): 3913-3926.
doi: 10.1109/TITS.2019.2906365
[9] Li X C, Cheng Y, Cong G, et al. Discovering Pollution Sources and Propagation Patterns in Urban Area[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017: 1863-1872.
[10] Zhao L, Song Y J, Zhang C, et al. T-GCN: A Temporal Graph Convolutional Network for Traffic Prediction[J]. IEEE Transactions on Intelligent Transportation Systems, 2020, 21(9): 3848-3858.
doi: 10.1109/TITS.2019.2935152
[11] Bai L, Yao L N, Li C, et al. Adaptive Graph Convolutional Recurrent Network for Traffic Forecasting[C]// Proceedings of the 34th International Conference on Neural Information Processing Systems. 2020: 17804-17815.
[12] Wu T L, Chen F, Wan Y. Graph Attention LSTM Network: A New Model for Traffic Flow Forecasting[C]// Proceedings of 2018 5th International Conference on Information Science and Control Engineering. 2018: 241-245.
[13] Cai L, Janowicz K, Mai G C, et al. Traffic Transformer: Capturing the Continuity and Periodicity of Time Series for Traffic Forecasting[J]. Transactions in GIS, 2020, 24(3): 736-755.
doi: 10.1111/tgis.12644
[14] Zhu J Y, Zhang C, Zhang H C, et al. pg-Causality: Identifying Spatiotemporal Causal Pathways for Air Pollutants with Urban Big Data[J]. IEEE Transactions on Big Data, 2018, 4(4): 571-585.
doi: 10.1109/TBDATA.2017.2723899
[15] Liu W, Zheng Y, Chawla S, et al. Discovering Spatio-Temporal Causal Interactions in Traffic Data Streams[C]// Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2011: 1010-1018.
[16] Chu V W, Wong R K, Liu W, et al. Causal Structure Discovery for Spatio-Temporal Data[C]// Proceedings of the 2014 International Conference on Database Systems for Advanced Applications. 2014: 236-250.
[17] Kapoor V, Saxena D, Raychoudhury V, et al. Real Time Building and Maintaining Causal Congestion Graph for Intelligent Traffic Management[C]// Proceedings of 2018 IEEE International Conference on Pervasive Computing and Communications Workshops. 2018: 770-775.
[18] Granger C W. Investigating Causal Relations by Econometric Models and Cross-Spectral Methods[J]. Econometrica, 1969, 37(2): 424-438.
doi: 10.2307/1912791
[19] Li L, Su X N, Wang Y W, et al. Robust Causal Dependence Mining in Big Data Network and Its Application to Traffic Flow Predictions[J]. Transportation Research Part C: Emerging Technologies, 2015, 58: 292-307.
doi: 10.1016/j.trc.2015.03.003
[20] Peters J, Janzing D, Schölkopf B. Elements of Causal Inference: Foundations and Learning Algorithms[M]. MA: MIT Press, 2017.
[21] Pfister N, Bühlmann P, Peters J. Invariant Causal Prediction for Sequential Data[J]. Journal of the American Statistical Association, 2019, 114(527): 1264-1276.
doi: 10.1080/01621459.2018.1491403
[22] Mastakouri A A, Schölkopf B, Janzing D. Necessary and Sufficient Conditions for Causal Feature Selection in Time Series with Latent Common Causes[C]// Proceedings of the 38th International Conference on Machine Learning. 2021: 7502-7511.
[23] 刘菊, 许珺, 蔡玲, 等. 基于出租车用户出行的功能区识别[J]. 地球信息科学学报, 2018, 20(11):1550-1561.
doi: 10.12085/dqxxkx.2018.180164
[23] (Liu Ju, Xu Jun, Cai Ling, et al. Identifying Functional Regions Based on the Spatio-Temporal Pattern of Taxi Trajectories[J]. Journal of Geo-Information Science, 2018, 20(11): 1550-1561.)
doi: 10.12085/dqxxkx.2018.180164
[24] Guo J P, Zhang W X, Fan W G, et al. Combining Geographical and Social Influences with Deep Learning for Personalized Point-of-Interest Recommendation[J]. Journal of Management Information Systems, 2018, 35(4): 1121-1153.
doi: 10.1080/07421222.2018.1523564
[25] Ho S L, Xie M, Goh T N. A Comparative Study of Neural Network and Box-Jenkins ARIMA Modeling in Time Series Prediction[J]. Computers & Industrial Engineering, 2002, 42(2-4): 371-375.
doi: 10.1016/S0360-8352(02)00036-0
[26] Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276
[27] Chung J, Gulcehre C, Cho K, et al. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[C]// Proceedings of NIPS 2014 Workshop on Deep Learning. 2014.
[28] Shi X J, Chen Z R, Wang H, et al. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting[C]// Proceedings of the 28th International Conference on Neural Information Processing Systems - Volume 1. 2015: 802-810.
[29] Li Y G, Yu R, Shahabi C, et al. Diffusion Convolutional Recurrent Neural Network: Data-Driven Traffic Forecasting[OL]. arXiv Preprint, arXiv:1707.01926.
[1] 成全, 佘德昕. 融合患者体征与用药数据的图神经网络药物推荐方法研究*[J]. 数据分析与知识发现, 2022, 6(9): 113-124.
[2] 张若琦, 申建芳, 陈平华. 结合GNN、Bi-GRU及注意力机制的会话序列推荐*[J]. 数据分析与知识发现, 2022, 6(6): 46-54.
[3] 顾耀文,郑思,杨丰春,李姣. 基于图神经网络的抗结核杆菌药物虚拟筛选模型的建立及应用*[J]. 数据分析与知识发现, 2022, 6(11): 93-102.
[4] 冯小东, 惠康欣. 基于异构图神经网络的社交媒体文本主题聚类*[J]. 数据分析与知识发现, 2022, 6(10): 9-19.
[5] 黄学坚, 刘雨飏, 马廷淮. 基于改进型图神经网络的学术论文分类模型*[J]. 数据分析与知识发现, 2022, 6(10): 93-102.
[6] 顾耀文, 张博文, 郑思, 杨丰春, 李姣. 基于图注意力网络的药物ADMET分类预测模型构建方法*[J]. 数据分析与知识发现, 2021, 5(8): 76-85.
[7] 李旭晖,刘洋. 时空数据建模方法研究综述*[J]. 数据分析与知识发现, 2019, 3(3): 1-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn