Please wait a minute...
Advanced Search
数据分析与知识发现  2023, Vol. 7 Issue (1): 138-149     https://doi.org/10.11925/infotech.2096-3467.2022.0225
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于实体多元编码的时序知识图谱推理*
彭成,张春霞(),张鑫,郭倞涛,牛振东
北京理工大学计算机学院 北京 100081
Reasoning Model for Temporal Knowledge Graph Based on Entity Multiple Unit Coding
Peng Cheng,Zhang Chunxia(),Zhang Xin,Guo Jingtao,Niu Zhendong
School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China
全文: PDF (1568 KB)   HTML ( 25
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 解决时序知识图谱推理方法存在的实体信息获取片面和缺乏不同时间戳对于待推理事件重要性度量的问题。【方法】 提出一种基于实体多元编码的时序知识图谱推理模型。实体多元编码旨在引入三种实体特征编码,包括当前时间戳的实体切片特征编码、融合时间戳嵌入和实体静态特征的实体动态特征编码以及历史时间步上相对稳定的实体片段特征编码。同时,设计时序注意力机制来学习不同时间戳内的局部结构信息对推理目标的重要性权重。【结果】 该时序知识图推理模型在数据集ICEWS14上的实验结果为MRR:0.470 4, Hits@1:40.31%, Hits@3:50.02%, Hits@10:59.98%; 在ICEWS18上的实验结果为MRR:0.438 5, Hits@1:37.55%, Hits@3:46.92%, Hits@10:56.85%; 在YAGO上的实验结果为MRR:0.656 4, Hits@1:63.07%, Hits@3:65.87%, Hits@10:68.37%, 评估指标优于基线方法。【局限】 在大规模数据集上运行速度较慢。【结论】 本文方法捕获了时序知识图谱中包括实体切片特征、动态特征和片段特征的实体多元特征,所设计的时序注意力机制能够度量历史局部结构信息对推理的重要性,有效提升了时序知识图谱推理的性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
彭成
张春霞
张鑫
郭倞涛
牛振东
关键词 时序知识图谱时序知识图谱推理实体多元编码时序注意力机制知识图谱    
Abstract

[Objective] This paper tries to address the issues of incomplete entity information extraction and importance measurement of different timestamps for the events to be reasoned in temporal knowledge graph. [Methods] We proposed a new model based on entity multiple unit coding(EMUC). The EMUC introduces the entity slice feature encodings for the current timestamps, the entity dynamic feature encodings fusing timestamp embedding and entity static features, as well as entity segment feature encodings over historical steps. We also utilized a temporal attention mechanism to learn the importance weights of local structural information at different timestamps to the inference target. [Results] The experimental results of the proposed model on the ICEWS14 test set were MRR: 0.470 4, Hits@1: 40.31%, Hits@3: 50.02%, Hits@10: 59.98%, while on the ICEWS18 test set were MRR: 0.438 5, Hits@1: 37.55%, Hits@3: 46.92%, Hits@10: 56.85%, and on the YAGO test set are MRR: 0.656 4, Hits@1: 63.07%, Hits@3 : 65.87%, Hits@10: 68.37%. Our model outperforms the existing methods on these evaluating metrics. [Limitations] EMUC has slow inference speed for large-scale datasets. [Conclusions] The newly temporal attention mechanism measures the importance of historical local structure information for reasoning, which effectively improves the reasoning performance of the temporal knowledge graph.

Key wordsTemporal Knowledge Graph    Temporal Knowledge Graph Reasoning    Entity Multiple Unit Coding    Temporal Attention Mechanism    Knowledge Graph
收稿日期: 2022-03-17      出版日期: 2023-02-16
ZTFLH:  TP391  
基金资助:*国家重点研发计划(2020AAA0104903);国家自然科学基金项目的研究成果之一(62072039)
通讯作者: 张春霞,ORCID:0000-0003-0897-7986,E-mail: cxzhang@bit.edu.cn。   
引用本文:   
彭成, 张春霞, 张鑫, 郭倞涛, 牛振东. 基于实体多元编码的时序知识图谱推理*[J]. 数据分析与知识发现, 2023, 7(1): 138-149.
Peng Cheng, Zhang Chunxia, Zhang Xin, Guo Jingtao, Niu Zhendong. Reasoning Model for Temporal Knowledge Graph Based on Entity Multiple Unit Coding. Data Analysis and Knowledge Discovery, 2023, 7(1): 138-149.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022.0225      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2023/V7/I1/138
Fig.1  基于实体多元编码的时序知识图谱推理模型
名称 实体数 关系数 训练集 验证集 测试集 间隔
ICEWS14 7 128 230 63 685 13 823 13 222 24 Hour
ICEWS18 23 033 256 373 018 45 995 49 545 24 Hour
YAGO 10 623 10 161 540 19 523 20 026 1 Year
Table 1  数据集统计
模型 MRR Hits@1/% Hits@3/% Hits@10/%
TTransE 0.130 0 2.78 16.78 34.28
TA-DistMult 0.264 7 17.09 30.22 45.41
DE-SimplE 0.326 7 24.43 35.69 49.11
TNTComplEx 0.321 2 23.35 36.03 49.13
CyGNet 0.327 3 23.69 36.31 50.67
RE-Net 0.382 8 28.68 41.34 54.52
xERTE 0.407 9 32.70 45.67 57.30
TLogic 0.430 4 33.56 48.27 61.23
EMUC w/o attention & w/o time-related 0.465 8 39.91 49.23 59.53
EMUC w/o attention & w/o slice 0.472 6 40.71 49.93 59.90
EMUC w/o time-related & w/o slice 0.463 3 39.59 49.03 59.42
EMUC w/o time-related 0.462 0 39.41 48.73 59.62
EMUC w/o attention 0.471 4 40.56 49.96 59.67
EMUC w/o dynamic 0.461 1 39.20 48.93 59.41
EMUC w/o fragment 0.461 5 39.29 48.78 59.34
EMUC w/o slice 0.467 1 39.98 49.35 59.66
EMUC 0.470 4 40.31 50.02 59.98
Table 2  数据集ICEWS14上时序知识图谱推理实验结果
模型 MRR Hits@1/% Hits@3/% Hits@10/%
TTransE 0.084 3 2.00 8.71 22.06
TA-DistMult 0.167 5 8.61 18.41 33.59
DE-SimplE 0.193 0 11.53 21.86 34.80
TNTComplEx 0.212 3 13.28 24.02 36.91
CyGNet 0.249 3 15.90 28.28 42.61
RE-Net 0.288 1 19.05 32.44 47.51
xERTE 0.293 1 21.03 33.51 46.48
TLogic 0.298 2 20.54 33.95 48.53
TPath 0.421 9 37.61 45.74 50.82
EMUC w/o attention & w/o time-related 0.428 9 36.10 45.36 55.93
EMUC w/o attention & w/o slice 0.423 3 35.52 44.88 55.51
EMUC w/o slice & w/o time-related 0.428 3 36.04 45.44 55.89
EMUC w/o time-related 0.422 7 35.45 44.81 55.50
EMUC w/o attention 0.430 2 35.17 47.66 56.22
EMUC w/o dynamic 0.425 3 35.71 45.04 55.77
EMUC w/o fragment 0.422 4 35.35 44.90 55.39
EMUC w/o slice 0.429 3 36.25 45.49 55.92
EMUC 0.438 5 37.55 46.92 56.85
Table 3  数据集ICEWS18上时序知识图谱推理实验结果
模型 MRR Hits@1/% Hits@3/% Hits@10/%
TTransE 0.321 1 19.04 42.00 52.21
TA-DistMult 0.617 2 63.32 65.19
EvolveRGCN 0.597 4 61.03 61.69
R-GCRN+MLP 0.538 9 56.06 61.19
RE-Net 0.651 6 65.63 68.08
EMUC w/o attention & w/o time-related 0.648 1 63.27 65.52 67.90
EMUC w/o attention & w/o slice 0.647 1 63.14 64.86 67.95
EMUC w/o slice & w/o time-related 0.642 5 62.51 64.61 67.24
EMUC w/o time-related 0.639 3 62.25 64.29 66.73
EMUC w/o attention 0.640 7 62.31 64.44 67.12
EMUC w/o dynamic 0.641 5 62.49 64.46 67.04
EMUC w/o fragment 0.643 0 62.62 64.68 67.30
EMUC w/o slice 0.650 0 63.31 65.43 67.87
EMUC 0.656 4 63.07 65.87 68.37
Table 4  数据集YAGO上时序知识图谱推理实验结果
Fig.2  EMUC模型在ICEWS18数据集上的参数实验结果
[1] Bordes A, Usunier N, García-Durán A, et al. Translating Embeddings for Modeling Multi-Relational Data[C]// Proceedings of the 2013 Conference and Workshop on Neural Information Processing Systems. 2013: 2787-2795.
[2] Yang B S, Yih S W, He X D, et al. Learning Multi-Relational Semantics Using Neural-Embedding Models[C]// Proceedings of the 2014 Conference and Workshop on Neural Information Processing Systems. 2014.
[3] Trouillon T, Welbl J, Riedel S, et al. Complex Embeddings for Simple Link Prediction[C]// Proceedings of the 2016 International Conference on Machine Learning. 2016: 2071-2080.
[4] Schlichtkrull M, Kipf T N, Bloem P, et al. Modeling Relational Data with Graph Convolutional Networks[C]// Proceedings of the 2018 European Semantic Web Symposium. 2018: 593-607.
[5] Zhang W, Paudel B, Wang L, et al. Iteratively Learning Embeddings and Rules for Knowledge Graph Reasoning[C]// Proceedings of the 2019 World Wide Web Conference. 2019: 2366-2377.
[6] 阮小芸, 廖健斌, 李祥, 等. 基于人才知识图谱推理的强化学习可解释推荐研究[J]. 数据分析与知识发现, 2021, 5(6):36-50.
[6] ( Ruan Xiaoyun, Liao Jianbin, Li Xiang, et al. Interpretable Recommendation of Reinforcement Learning Based on Talent Knowledge Graph Reasoning[J]. Data Analysis and Knowledge Discovery, 2021, 5(6): 36-50.)
[7] 朱超宇, 刘雷. 基于知识图谱的医学决策支持应用综述[J]. 数据分析与知识发现, 2020, 4(12): 26-32.
[7] ( Zhu Chaoyu, Liu Lei. A Review of Medical Decision Supports Based on Knowledge Graph[J]. Data Analysis and Knowledge Discovery, 2020, 4(12): 26-32.)
[8] Leblay J, Chekol M W. Deriving Validity Time in Knowledge Graph[C]// Proceedings of the 2018 World Wide Web Conference. 2018: 1771-1776.
[9] García-Durán A, Dumančić S, Niepert M. Learning Sequence Encoders for Temporal Knowledge Graph Completion[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 4816-4821.
[10] Goel R, Kazemi S M, Brubaker M, et al. Diachronic Embedding for Temporal Knowledge Graph Completion[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020: 3988-3995.
[11] Lacroix T, Obozinski G, Usunier N. Tensor Decompositions for Temporal Knowledge Base Completion[C]// Proceedings of the 8th International Conference on Learning Representations. 2020.
[12] Jin W, Qu M, Jin X S, et al. Recurrent Event Network: Autoregressive Structure Inference over Temporal Knowledge Graphs[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. 2020: 6669-6683.
[13] 陈浩, 李永强, 冯远静. 基于多关系循环事件的动态知识图谱推理[J]. 模式识别与人工智能, 2020, 33(4): 337-343.
doi: 10.16451/j.cnki.issn1003-6059.202004006
[13] ( Chen Hao, Li Yongqiang, Feng Yuanjing, Dynamic Knowledge Graph Inference Based on Multiple Relational Cyclic Events[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(4): 337-343.)
doi: 10.16451/j.cnki.issn1003-6059.202004006
[14] Wu J P, Cao M, Cheung J C K, et al. TeMP: Temporal Message Passing for Temporal Knowledge Graph Completion[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. 2020: 5730-5746.
[15] Han Z, Chen P, Ma Y, et al. Explainable Subgraph Reasoning for Forecasting on Temporal Knowledge Graphs[C]// Proceedings of the 2021 International Conference on Learning Representations. 2021.
[16] Li Z X, Jin X L, Li W, et al. Temporal Knowledge Graph Reasoning Based on Evolutional Representation Learning[C]// Proceedings of the 44th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2021: 408-417.
[17] Liu Y S, Ma Y P, Hildebrandt M, et al. TLogic: Temporal Logical Rules for Explainable Link Forecasting on Temporal Knowledge Graphs[C]// Proceedings of the 36th AAAI Conference on Artificial Intelligence. 2022: 4120-4127.
[18] Boschee E, Lautenschlager J, O’Brien S, et al. ICEWS Coded Event Data[OL]. Harvard Dataverse, 2015. https://doi.org/10.7910/DVN/28075.
[19] Mahdisoltani F, Biega J A, Suchanek F M.YAGO3: A Knowledge Base from Multilingual Wikipedias[C]// Proceedings of the 2014 Conference on Innovative Data Systems Research. 2014.
[20] Zhu C C, Chen M H, Fan C J, et al. Learning from History: Modeling Temporal Knowledge Graphs with Sequential Copy-Generation Networks[C]// Proceedings of the 35th AAAI Conference on Artificial Intelligence. 2021: 4732-4740.
[21] Bai L Y, Yu W T, Chen M Z, et al. Multi-Hop Reasoning over Paths in Temporal Knowledge Graphs Using Reinforcement Learning[J]. Applied Soft Computing, 2021, 103: 107144.
doi: 10.1016/j.asoc.2021.107144
[22] Pareja A, Domeniconi G, Chen J, et al. EvolveGCN: Evolving Graph Convolutional Networks for Dynamic Graphs[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020.
[1] 刘春江, 李姝影, 胡汗林, 方曙. 图数据库在复杂网络分析中的研究与应用进展*[J]. 数据分析与知识发现, 2022, 6(7): 1-11.
[2] 张晗, 安欣宇, 刘春鹤. 基于多源语义知识图谱的药物知识发现:以药物重定位为实证*[J]. 数据分析与知识发现, 2022, 6(7): 87-98.
[3] 刘勘, 徐勤亚, 於陆. 面向营商环境的知识图谱构建研究*[J]. 数据分析与知识发现, 2022, 6(4): 82-96.
[4] 张卫, 王昊, 陈玥彤, 范涛, 邓三鸿. 融合迁移学习与文本增强的中文成语隐喻知识识别与关联研究*[J]. 数据分析与知识发现, 2022, 6(2/3): 167-183.
[5] 刘政昊, 钱宇星, 衣天龙, 吕华揆. 知识关联视角下金融证券知识图谱构建与相关股票发现*[J]. 数据分析与知识发现, 2022, 6(2/3): 184-201.
[6] 程子佳, 陈翀. 面向流行性疾病科普的用户问题理解与答案内容组织*[J]. 数据分析与知识发现, 2022, 6(2/3): 202-211.
[7] 侯党, 傅湘玲, 高嵩峰, 彭雷, 王友军, 宋美琦. 基于企业知识图谱的企业关联关系挖掘*[J]. 数据分析与知识发现, 2022, 6(2/3): 212-221.
[8] 李智杰, 王瑞, 李昌华, 张颉. 联合关系上下文负采样的知识图谱嵌入*[J]. 数据分析与知识发现, 2022, 6(12): 90-98.
[9] 华斌,康月,范林昊. 政策文本的知识建模与关联问答研究[J]. 数据分析与知识发现, 2022, 6(11): 79-92.
[10] 周阳,李学俊,王冬磊,陈方,彭莉娟. 炸药配方设计知识图谱的构建与可视分析方法研究*[J]. 数据分析与知识发现, 2021, 5(9): 42-53.
[11] 沈科杰, 黄焕婷, 化柏林. 基于公开履历数据的人物知识图谱构建*[J]. 数据分析与知识发现, 2021, 5(7): 81-90.
[12] 阮小芸,廖健斌,李祥,杨阳,李岱峰. 基于人才知识图谱推理的强化学习可解释推荐研究*[J]. 数据分析与知识发现, 2021, 5(6): 36-50.
[13] 李贺,刘嘉宇,李世钰,吴迪,金帅岐. 基于疾病知识图谱的自动问答系统优化研究*[J]. 数据分析与知识发现, 2021, 5(5): 115-126.
[14] 代冰,胡正银. 基于文献的知识发现新近研究综述 *[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[15] 朱冬亮, 文奕, 万子琛. 基于知识图谱的推荐系统研究综述*[J]. 数据分析与知识发现, 2021, 5(12): 1-13.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn