Please wait a minute...
Advanced Search
数据分析与知识发现  2023, Vol. 7 Issue (3): 43-57     https://doi.org/10.11925/infotech.2096-3467.2022.0228
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
融入情感分析的多层交互深度推荐模型研究*
李浩君(),吕韵,汪旭辉,黄诘雅
浙江工业大学教育科学与技术学院 杭州 310023
A Deep Recommendation Model with Multi-Layer Interaction and Sentiment Analysis
Li Haojun(),Lv Yun,Wang Xuhui,Huang Jieya
College of Education Science and Technology, Zhejiang University of Technology, Hangzhou 310023, China
全文: PDF (1549 KB)   HTML ( 30
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 针对传统推荐方法中仅依赖单一的用户评分来推断用户偏好,忽略情感态度对用户行为影响的问题,提出一种融入情感分析的多层交互深度推荐模型。【方法】 利用BRET词向量表征评论文本,双向循环神经网络量化评论中的情感信息,根据情感分值更新评分矩阵,映射出用户与资源的浅层特征;结合卷积神经网络和自注意力机制从评论文本中捕获用户与资源的深层特征;融合浅层与深层特征,采用多层神经网络建模用户与资源间的非线性交互,预测资源推荐的评分值。【结果】 在Amazon Product Data数据集上的实验结果表明,与其他基线模型对比,本文模型的MAE和RMSE指标最多下降7.93和9.73个百分点。【局限】 未考虑用户情感的时间动态性,且忽略了情感分析方法的领域自适应性。【结论】 融入情感分析的推荐模型能更准确地反映用户真实兴趣偏好,对比现有相似模型,本文所提模型能有效提升推荐质量。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李浩君
吕韵
汪旭辉
黄诘雅
关键词 情感分析特征挖掘神经网络多层交互推荐模型    
Abstract

[Objective] This paper proposes a deep recommendation model with multi-layer interaction and sentiment analysis. It tries to improve the traditional recommendation algorithms which rely on single user ratings to infer user preferences and ignore the impacts of sentiments. [Methods] First, we used the BRET word vector to represent the reviews, and utilized the bidirectional recurrent neural network to quantify their sentiments. Then, we updated the rating matrix using the sentiment values, and mapped the shallow features of users and resources. Fourth, we captured the deep features of users and resources from reviews with the convolutional neural network and the self-attention mechanism. Finally, we merged the shallow and deep features, and used the multi-layer perceptron to model the complex nonlinear interaction between users and resources to predict the rating of recommended resources. [Results] We examined the model with Amazon dataset and found the MAE and RMSE metrics were upto 7.93% and 9.37% lower than those of the baseline models. [Limitations] Our model did not include the temporal dynamics of user sentiment and ignore the domain adaptiveness of sentiment analysis methods. [Conclusions] The recommendation model incorporating sentiment analysis can more accurately reflect users’ real interests and preferences, and then effectively improve the recommendation accuracy.

Key wordsSentiment Analysis    Feature Mining    Neural Networks    Multi-Layer Interaction    Recommendation Models
收稿日期: 2022-03-18      出版日期: 2023-04-13
ZTFLH:  TP391  
基金资助:国家自然科学基金面上项目(62077043);浙江省哲学社会科学规划交叉学科重点支持课题(22JCXK05Z)
通讯作者: 李浩君,ORCID:0000-0003-0318-6528,E-mail:zgdlhj@zjut.edu.cn。   
引用本文:   
李浩君, 吕韵, 汪旭辉, 黄诘雅. 融入情感分析的多层交互深度推荐模型研究*[J]. 数据分析与知识发现, 2023, 7(3): 43-57.
Li Haojun, Lv Yun, Wang Xuhui, Huang Jieya. A Deep Recommendation Model with Multi-Layer Interaction and Sentiment Analysis. Data Analysis and Knowledge Discovery, 2023, 7(3): 43-57.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022.0228      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2023/V7/I3/43
符号 定义
r u , i 用户 u对资源 i的真实评分
r ^ u , i 用户 u对资源 i的预测评分
R e u , i 用户 u对资源 i的评论
U L F M 用户浅层特征
I L F M 资源浅层特征
U T E X T 用户深层特征
I T E X T 资源深层特征
a u , m 用户 u m条评论对应的贡献度权值
a i , n 资源 i n条评论对应的贡献度权值
Table 1  符号定义
Fig.1  DeepSAMI模型整体框架
Fig.2  基于情感分析的评论文本浅层特征挖掘结构
Fig.3  结合CNN与注意力机制的评论文本深层特征挖掘结构图
数据集 用户数 资源数 评分数 数据稀疏度(%)
Movies_and_TV 123 960 50 052 1 697 533 97.26
Beauty 22 363 12 101 198 502 99.57
Toys_and_Games 19 412 11 924 167 597 92.75
Digital_Music 5 541 3 568 284 923 99.67
Table 2  数据集基本信息
模型 评分
矩阵
评论
文本
深度
学习
注意力
机制
用户
情感
LFM / / / /
SVD++ / / / /
HFT / / /
SATMCF / / /
DeepCoNN / / /
NARRE /
DeepSAMI
Table 3  基线模型对比
情感分析模型 准确率
Word2Vec-NB 0.815 0
Word2Vec-SVM 0.870 7
Word2Vec-RNN 0.878 1
Word2Vec-BiRNN 0.895 3
BERT-BiRNN 0.921 6
Table 4  情感分析实验结果
评论文本 原始评分 更新后评分
(a) This had a totally ridiculous story line, a highly predictable plot, but was still was a lot of fun to watch... 5 4.0
(b) Don’t waste your money. This is a short DVD and the host is boring and offers information that is common sense to any idiot. Pass on this and buy something else. Very generic… 3 1.9
(c) I just love Hepburn, Grant and Stewart in this movie. It is fun to watch this great trio working together. 5 4.2
Table 5  部分评分数据更新前后对比
Beauty Movies_and_TV Toys_and_Games Digital_Music
对比
模型
(a)LFM 1.008 1 0.901 5 0.794 7 0.844 6
(b)SVD++ 1.006 2 0.997 4 0.795 2 0.840 9
(c)HFT 0.911 4 0.958 8 0.663 8 0.717 7
(d)SATMCF 0.873 3 0.921 6 0.649 9 0.700 4
(e)DeepCoNN 0.855 0 0.934 2 0.643 5 0.681 9
(f)NARRE 0.848 8 0.919 4 0.626 4 0.654 7
(g)DeepSAMI 0.836 4 0.894 5 0.612 7 0.638 4
下降
(百分点)
(g)vs.(c) 7.50 6.43 5.11 7.93
(g)vs.(d) 3.69 2.71 3.72 6.20
(g)vs.(e) 1.86 3.97 3.08 4.35
(g)vs.(f) 1.24 2.49 1.37 1.63
Table 6  各模型在4个数据集上的MAE对比
Beauty Movies_and_TV Toys_and_Games Digital_Music
对比
模型
(a)LFM 1.298 5 1.290 7 0.883 9 0.924 7
(b)SVD++ 1.297 0 1.285 1 0.879 5 0.910 9
(c)HFT 1.082 2 1.109 4 0.814 5 0.857 2
(d)SATMCF 1.037 4 1.095 0 0.788 3 0.834 8
(e)DeepCoNN 1.059 7 1.084 5 0.797 3 0.837 9
(f)NARRE 0.998 0 1.065 6 0.785 1 0.815 2
(g)DeepSAMI 0.984 9 1.029 3 0.763 8 0.791 1
下降
(百分点)
(g)vs.(c) 9.73 8.01 5.07 6.61
(g)vs.(d) 5.25 6.57 2.45 4.37
(g)vs.(e) 7.48 5.52 3.35 4.68
(g)vs.(f) 1.31 3.63 2.13 2.41
Table7  各模型在4个数据集上的RMSE对比
Fig.4  MLP隐藏层深度对模型性能影响
Fig.5  平衡因子 α对模型性能影响
模型 Beauty Movies_and_TV Toys_and_Games Digital_Music
MAE RMSE MAE RMSE MAE RMSE MAE RMSE
DeepSAMI 0.836 4 0.984 9 0.894 5 1.029 3 0.612 7 0.763 8 0.638 4 0.791 1
DeepSAMI-S 0.939 7 1.108 6 0.981 2 1.119 4 0.720 3 0.870 4 0.788 6 0.900 3
DeepSAMI-I 0.871 2 1.016 7 0.919 3 1.051 9 0.635 8 0.805 1 0.693 7 0.822 1
DeepSAMI-B 0.902 2 1.075 4 0.957 5 1.094 9 0.691 8 0.832 1 0.747 2 0.883 7
Table 8  变体模型对比实验结果
[1] Du Y, Wang L, Peng Z, et al. Review-Based Hierarchical Attention Cooperative Neural Networks for Recommendation[J]. Neurocomputing, 2021, 447: 38-47.
doi: 10.1016/j.neucom.2021.03.098
[2] 杨辰, 陈晓虹, 王楚涵, 等. 基于用户细粒度属性偏好聚类的推荐策略[J]. 数据分析与知识发现, 2021, 5(10): 94-102.
[2] ( Yang Chen, Chen Xiaohong, Wang Chuhan, et al. Recommendation Strategy Based on Users’ Preferences for Fine-Grained Attributes[J]. Data Analysis and Knowledge Discovery, 2021, 5(10): 94-102.)
[3] Fan J, Jiang Y C, Liu Y Z, et al. Interpretable MOOC Recommendation: A Multi-Attention Network for Personalized Learning Behavior Analysis[J]. Internet Research, 2022, 32(2): 588-605.
doi: 10.1108/INTR-08-2020-0477
[4] Xiao W Y, Zhao H, Pan H J, et al. Social Explorative Attention Based Recommendation for Content Distribution Platforms[J]. Data Mining and Knowledge Discovery, 2021, 35(2): 533-567.
doi: 10.1007/s10618-020-00729-1
[5] Mitra S, Jenamani M. Helpfulness of Online Consumer Reviews: A Multi-Perspective Approach[J]. Information Processing & Management, 2021, 58(3): 102538.
doi: 10.1016/j.ipm.2021.102538
[6] 张宜浩, 朱小飞, 徐传运, 等. 基于用户评论的深度情感分析和多视图协同融合的混合推荐方法[J]. 计算机学报, 2019, 42(6): 1316-1333.
[6] ( Zhang Yihao, Zhu Xiaofei, Xu Chuanyun, et al. Hybrid Recommendation Approach Based on Deep Sentiment Analysis of User Reviews and Multi-View Collaborative Fusion[J]. Chinese Journal of Computers, 2019, 42(6): 1316-1333.)
[7] Sun P, Li J S, Li G H. Research on Collaborative Filtering Recommendation Algorithm Based on Sentiment Analysis and Topic Model[C]// Proceedings of the 4th International Conference on Big Data and Computing. 2019: 169-178.
[8] Liu Y Y, Yang B, Pei H B, et al. Neural Explainable Recommender Model Based on Attributes and Reviews[J]. Journal of Computer Science and Technology, 2020, 35(6): 1446-1460.
doi: 10.1007/s11390-020-0152-8
[9] Koren Y, Bell R, Volinsky C. Matrix Factorization Techniques for Recommender Systems[J]. Computer, 2009, 42(8): 30-37.
[10] Salakhutdinov R, Mnih A. Probabilistic Matrix Factorization[C]// Proceedings of the 20th International Conference on Neural Information Processing Systems. 2007: 1257-1264.
[11] Liu D H, Li J, Du B, et al. A Hybrid Neural Network Approach to Combine Textual Information and Rating Information for Item Recommendation[J]. Knowledge and Information Systems, 2021, 63(3): 621-646.
doi: 10.1007/s10115-020-01528-2
[12] Jakob N, Weber S H, Müller M C, et al. Beyond the Stars: Exploiting Free-Text User Reviews to Improve the Accuracy of Movie Recommendations[C]// Proceeding of the 1st International CIKM Workshop on Topic-Sentiment Analysis for Mass Opinion. 2009: 57-64.
[13] Wang C, Blei D M. Collaborative Topic Modeling for Recommending Scientific Articles[C]// Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2011: 448-456.
[14] Bao Y, Fang H, Zhang J. TopicMF: Simultaneously Exploiting Ratings and Reviews for Recommendation[C]// Proceedings of the 28th AAAI Conference on Artificial Intelligence. 2014: 2-8.
[15] Kim D, Park C, Oh J, et al. Convolutional Matrix Factorization for Document Context-Aware Recommendation[C]// Proceedings of the 10th ACM Conference on Recommender Systems. 2016: 233-240.
[16] Zheng L, Noroozi V, Yu P S. Joint Deep Modeling of Users and Items Using Reviews for Recommendation[C]// Proceedings of the 10th ACM International Conference on Web Search and Data Mining. 2017: 425-434.
[17] Seo S, Huang J, Yang H, et al. Interpretable Convolutional Neural Networks with Dual Local and Global Attention for Review Rating Prediction[C]// Proceedings of the 11th ACM Conference on Recommender Systems. 2017: 297-305.
[18] Chen C, Zhang M, Liu Y Q, et al. Neural Attentional Rating Regression with Review-Level Explanations[C]// Proceedings of the 2018 World Wide Web Conference. 2018: 1583-1592.
[19] Dong X, Ni J C, Cheng W, et al. Asymmetrical Hierarchical Networks with Attentive Interactions for Interpretable Review-Based Recommendation[C]// Proceedings of the 2020 AAAI Conference on Artificial Intelligence. 2020: 7667-7674.
[20] Guo S, Wang Y, Yuan H, et al. TAERT: Triple-Attentional Explainable Recommendation with Temporal Convolutional Network[J]. Information Sciences, 2021, 567: 185-200.
doi: 10.1016/j.ins.2021.03.034
[21] Li W, Xu B. Aspect-Based Fashion Recommendation with Attention Mechanism[J]. IEEE Access, 2020, 8: 141814-141823.
doi: 10.1109/ACCESS.2020.3013639
[22] 冯兴杰, 曾云泽. 基于评分矩阵与评论文本的深度推荐模型[J]. 计算机学报, 2020, 43(5): 884-900.
[22] ( Feng Xingjie, Zeng Yunze. Joint Deep Modeling of Rating Matrix and Reviews for Recommendation[J]. Chinese Journal of Computers, 2020, 43(5): 884-900.)
[23] Ren Q F, Zheng Y, Guo G S, et al. Resource Recommendation Algorithm Based on Text Semantics and Sentiment Analysis[C]// Proceedings of the 3rd IEEE International Conference on Robotic Computing. 2019: 363-368.
[24] Kim T Y, Pan S B, Kim S H. Sentiment Digitization Modeling for Recommendation System[J]. Sustainability, 2020, 12(12): 5191.
doi: 10.3390/su12125191
[25] 王红霞, 陈健, 程艳芬. 采用评论挖掘修正用户评分的改进协同过滤算法[J]. 浙江大学学报(工学版), 2019, 53(3): 522-532.
[25] ( Wang Hongxia, Chen Jian, Cheng Yanfen. Improved Collaborative Filtering Algorithm to Revise Users’ Rating by Review Mining[J]. Journal of Zhejiang University(Engineering Science), 2019, 53(3): 522-532.)
[26] Da’u A, Salim N. Sentiment-Aware Deep Recommender System with Neural Attention Networks[J]. IEEE Access, 2019, 7: 45472-45484.
doi: 10.1109/ACCESS.2019.2907729
[27] Jiang L, Liu L, Yao J J, et al. A Hybrid Recommendation Model in Social Media Based on Deep Emotion Analysis and Multi-Source View Fusion[J]. Journal of Cloud Computing, 2020, 9: Article No.57.
[28] Zhang Y, Liu Z, Sang C. Unifying Paragraph Embeddings and Neural Collaborative Filtering for Hybrid Recommendation[J]. Applied Soft Computing, 2021, 106: 107345.
doi: 10.1016/j.asoc.2021.107345
[29] Devlin J, Chang M W, Lee K, et al. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. 2019: 4171-4186.
[30] Zhang X F, Yan K P. An Algorithm of Bidirectional RNN for Offline Handwritten Chinese Text Recognition[C]// Proceedings of the 15th International Conference on Intelligent Computing. 2019: 423-431.
[31] Zhang Y, Liu Z, Sang C. Unifying Paragraph Embeddings and Neural Collaborative Filtering for Hybrid Recommendation[J]. Applied Soft Computing, 2021, 106: 107345.
doi: 10.1016/j.asoc.2021.107345
[32] Conneau A, Schwenk H, Barrault L, et al. Very Deep Convolutional Networks for Text Classification[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. 2017: 1107-1116.
[33] Zhang X, Zhao J, LeCun Y. Character-Level Convolutional Networks for Text Classification[OL]. arXiv Preprint, arXiv: 1509.01626.
[34] Hu B, Lu Z, Li H, et al. Convolutional Neural Network Architectures for Matching Natural Language Sentences[C]// Proceedings of the 27th International Conference on Neural Information Processing Systems. 2014: 2042-2050.
[35] Al-Sabahi K, Zhang Z P, Nadher M. A Hierarchical Structured Self-Attentive Model for Extractive Document Summarization (HSSAS)[J]. IEEE Access, 2018, 6: 24205-24212.
doi: 10.1109/ACCESS.2018.2829199
[36] Wang X, He X N, Nie L Q, et al. Item Silk Road: Recommending Items from Information Domains to Social Users[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2017: 185-194.
[37] He X N, Liao L Z, Zhang H W, et al. Neural Collaborative Filtering[C]// Proceedings of the 26th International Conference on World Wide Web. 2017: 173-182.
[38] He X N, Chua T S. Neural Factorization Machines for Sparse Predictive Analytics[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2017: 355-364.
[39] Li P J, Wang Z H, Ren Z C, et al. Neural Rating Regression with Abstractive Tips Generation for Recommendation[C]// Proceedings of the 40th International ACM SIGIR Conference on Research and Development in Information Retrieval. 2017: 345-354.
[40] Cai Y, Ke W, Cui E, et al. A Deep Recommendation Model of Cross-Grained Sentiments of User Reviews and Ratings[J]. Information Processing & Management, 2022, 59(2): 102842.
doi: 10.1016/j.ipm.2021.102842
[41] Du Y, Wang L, Peng Z, et al. Review-Based Hierarchical Attention Cooperative Neural Networks for Recommendation[J]. Neurocomputing, 2021, 447: 38-47.
doi: 10.1016/j.neucom.2021.03.098
[42] Koren Y. Factorization Meets the Neighborhood: A Multifaceted Collaborative Filtering Model[C]// Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2008: 426-434.
[43] McAuley J, Leskovec J. Hidden Factors and Hidden Topics: Understanding Rating Dimensions with Review Text[C]// Proceedings of the 7th ACM Conference on Recommender Systems. 2013: 165-172.
[44] Sun P, Li J S, Li G H. Research on Collaborative Filtering Recommendation Algorithm Based on Sentiment Analysis and Topic Model[C]// Proceedings of the 4th International Conference on Big Data and Computing. 2019: 169-178.
[1] 裴伟, 孙水发, 李小龙, 鲁际, 杨柳, 吴义熔. 融合领域知识的医学命名实体识别研究*[J]. 数据分析与知识发现, 2023, 7(3): 142-154.
[2] 周宁, 钟娜, 靳高雅, 刘斌. 基于混合词嵌入的双通道注意力网络中文文本情感分析*[J]. 数据分析与知识发现, 2023, 7(3): 58-68.
[3] 段宇锋, 贺国秀. 面向中文医学文本命名实体识别的神经网络模块分解分析*[J]. 数据分析与知识发现, 2023, 7(2): 26-37.
[4] 王昊, 龚丽娟, 周泽聿, 范涛, 王永生. 融合语义增强的社交媒体虚假信息检测方法研究*[J]. 数据分析与知识发现, 2023, 7(2): 48-60.
[5] 徐月梅, 曹晗, 王文清, 杜宛泽, 徐承炀. 跨语言情感分析研究综述*[J]. 数据分析与知识发现, 2023, 7(1): 1-21.
[6] 肖宇晗, 林慧苹. 基于CWSA方面词提取模型的差异化需求挖掘方法研究——以京东手机评论为例*[J]. 数据分析与知识发现, 2023, 7(1): 63-75.
[7] 赵蕊洁, 佟昕瑀, 刘小桦, 路永和. 基于神经网络的医药科技论文实体识别与标注研究*[J]. 数据分析与知识发现, 2022, 6(9): 100-112.
[8] 成全, 佘德昕. 融合患者体征与用药数据的图神经网络药物推荐方法研究*[J]. 数据分析与知识发现, 2022, 6(9): 113-124.
[9] 唐娇, 张力生, 桑春艳. 基于潜在主题分布和长、短期用户表示的新闻推荐模型*[J]. 数据分析与知识发现, 2022, 6(9): 52-64.
[10] 游新冬, 袁梦龙, 张乐, 吕学强. CNN-SM:基于义原与多特征融合的消费品领域缺陷词识别模型*[J]. 数据分析与知识发现, 2022, 6(9): 77-85.
[11] 杨美芳, 杨波. 基于笔画ELMo嵌入IDCNN-CRF模型的企业风险领域实体抽取研究*[J]. 数据分析与知识发现, 2022, 6(9): 86-99.
[12] 赵鹏武, 李志义, 林小琦. 基于注意力机制和卷积神经网络的中文人物关系抽取与识别*[J]. 数据分析与知识发现, 2022, 6(8): 41-51.
[13] 周宁, 靳高雅, 石雯茜. 融合神经网络与全局推理的实体共指消解算法*[J]. 数据分析与知识发现, 2022, 6(8): 75-83.
[14] 杨文丽, 李娜娜. 基于对抗网络的文本对齐跨语言情感分类方法*[J]. 数据分析与知识发现, 2022, 6(7): 141-151.
[15] 张若琦, 申建芳, 陈平华. 结合GNN、Bi-GRU及注意力机制的会话序列推荐*[J]. 数据分析与知识发现, 2022, 6(6): 46-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn