Please wait a minute...
Advanced Search
数据分析与知识发现  2023, Vol. 7 Issue (8): 30-45     https://doi.org/10.11925/infotech.2096-3467.2022.0721
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于深度学习与多分类轮询机制的高质量“卡脖子”技术专利识别模型——以专利申请文件为研究主体*
赵雪峰1,吴德林1,吴伟伟2(),孙卓荦1,胡瑾瑾1,廉莹3,单佳宇4
1哈尔滨工业大学(深圳)经济管理学院 深圳 518055
2哈尔滨工业大学经济与管理学院 哈尔滨 150006
3深圳沃德知识产权代理事务所 深圳 518000
4深圳盈峰知识产权咨询有限公司 深圳 518000
Identifying High-Quality Technology Patents Based on Deep Learning and Multi-Category Polling Mechanism——Case Study of Patent Applications
Zhao Xuefeng1,Wu Delin1,Wu Weiwei2(),Sun Zhuoluo1,Hu Jinjin1,Lian Ying3,Shan Jiayu4
1School of Management, Harbin Institute of Technology, Shenzhen, Shenzhen 518055, China
2School of Management, Harbin Institute of Technology, Harbin 150006, China
3Shenzhen Ward Intellectual Property Agency, Shenzhen 518000, China
4Shenzhen Yingfeng Intellectual Property Consulting Co., Ltd, Shenzhen 518000, China
全文: PDF (1785 KB)   HTML ( 35
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】解决传统单分类方法无法有效识别高质量“卡脖子”技术专利的问题。【方法】 以申请文件为研究主体,组合LSTM、Word2Vec及BERT得到多分类轮询的高质量“卡脖子”专利识别模型LSTM-Seq-BERT,并以IPC号为一级分类标签、授权状态为二级分类标签构建与模型对应的多级标签体系。【结果】对高质量“卡脖子”技术专利的识别精准度提高至88.1%。【局限】 仅使用粤港澳大湾区专利,存在数据不平衡情况。【结论】本文构建的二级分类标签和轮询机制的模型可以提高对高质量“卡脖子”技术专利的识别准确率,具有实际应用价值。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵雪峰
吴德林
吴伟伟
孙卓荦
胡瑾瑾
廉莹
单佳宇
关键词 “卡脖子”技术BERTLSTM申请文件多分类轮询专利    
Abstract

[Objective] This paper addresses the issues of the traditional single classification method, which cannot effectively identify high-quality “bottleneck” technology patents. [Methods] We developed a multi-category polling model (LSTM-Seq-BERT) with LSTM, Word2Vec, and BERT to identify high-quality “bottleneck” patents from the application documents. Moreover, we constructed a corresponding multi-level label system for the model with IPC number as the primary classification labels and authorization status as the secondary classification labels. [Results] The accuracy of identifying high-quality “bottleneck” technology patents was increased to 88.1%. [Limitations] We only utilized patents from the Hongkong-Macau-Guangdong Greater Bay Area, resulting in data imbalance. [Conclusions] The proposed model can enhance the accuracy of identifying high-quality “bottleneck” technology patents and possesses practical value.

Key words“Bottleneck” Technology    BERT    LSTM    Application Document    Multi-Category Polling    Patent
收稿日期: 2022-07-13      出版日期: 2023-10-08
ZTFLH:  G350  
基金资助:* 国家自然科学基金面上项目(72072047);黑龙江省哲学社会科学研究规划项目(19GLB087);教育部人文社会科学研究青年基金项目(20YJC630090)
通讯作者: 吴伟伟,ORCID:0000-0003-3769-3122,E-mail: wuweiwei@hit.edu.cn。   
引用本文:   
赵雪峰, 吴德林, 吴伟伟, 孙卓荦, 胡瑾瑾, 廉莹, 单佳宇. 基于深度学习与多分类轮询机制的高质量“卡脖子”技术专利识别模型——以专利申请文件为研究主体*[J]. 数据分析与知识发现, 2023, 7(8): 30-45.
Zhao Xuefeng, Wu Delin, Wu Weiwei, Sun Zhuoluo, Hu Jinjin, Lian Ying, Shan Jiayu. Identifying High-Quality Technology Patents Based on Deep Learning and Multi-Category Polling Mechanism——Case Study of Patent Applications. Data Analysis and Knowledge Discovery, 2023, 7(8): 30-45.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022.0721      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2023/V7/I8/30
Fig.1  LSTM-Seq-BERT数据处理过程
Fig.2  LSTM-Seq-BERT模型结构
Fig.3  LSTM-Seq-BERT的词向量过程
Fig.4  BERT二次词向量
Fig.5  实验设计整体流程
Fig.6  数据采集至模型训练的全生命周期
编号 部编号 部简介 分部类型 大类示例 IPC号示例
1 A 生活必须(农、轻、医) 农业
食品与烟草
个人与家庭用品
健康与娱乐
屠宰、肉品处理、家禽或鱼的加工;服饰缝纫用品、
珠宝等
A61K35/78
2 B 作业、运输 分离与混合
成形、印刷、运输
固体废物的处理、被污染土壤的再生;铸造、
粉末冶金等
B04B1/20
3 C 化学、冶金 化学
冶金
晶体生长;铁的冶金;合金或有色金属的处理等 C09D5/18
4 D 纺织、造纸 纺织和其他类型
不包括的柔性材料造纸
缝纫、绣花、簇绒;绳、除电缆以外的缆索等 D04B15/38
5 E 固定建筑物 建筑物
挖矿、采矿
水利工程、疏浚;土层或岩石的钻进、采矿等 E02D29/14
6 F 机械工程、照明、采暖、武器、爆破 发动机和泵
一般工艺
照明与加热
武器、爆破
液体变容式机械、液体泵或弹性流体泵;
气体或液体的贮存或分配等
F28D7/00
7 G 物理 仪表
核子学
测量、测试;光学;控制、调节等 G06K7/10
8 H 电学 电类技术 基本电气元件;发电、变电或配电等 H01M10/04
Table 1  IPC组成信息
Fig.7  佰腾网页面布局
专利
数据集
编号 申请号 预处理前专利文本 预处理后专利文本 标签
专利待
分类集
1 CN201810135040.5 发明名称:一种基于聚类算法和局部感知重构模型的作者推荐方法和系统
申请(专利权)人:哈尔滨工业大学深圳研究生院
聚类算法局部感知重构模型作者推荐,哈尔滨工业大学深圳研究生院 “卡脖子”专利(H04N19/137)
2 CN201810448147.5 发明名称:一种脂肪干细胞美容微囊泡的皮肤护理方法
申请(专利权)人:深圳市旷逸生物科技有限公司
脂肪干细胞美容微囊泡皮肤护理,深圳市旷逸生物科技有限公司 非“卡脖子”专利(A61K8/99)
高质量“卡脖子”专利待识别集 1 CN201810135040.5 本发明提出了一种基于聚类算法和局部感知重构模型的作者推荐方法及其系统,通过作者相关信息的树形结构表达、节点的特征表达、层次节点的位置映射、局部感知重构模型的建立,将由树形结构表示的作者信息转化为统一的向量表示,该向量包含了作者的相关信息及与作者相关的各层次的结构信息。进一步地,根据作者信息的统一向量表示,进行相关作者的推荐和检索。所述方法包括:A、树形结构表达;B、节点特征表达;C、层次节点位置映射;D、建立和求解局部感知重构模型;E、树形结构的统一向量表示;F、基于内容的作者推荐和检索。 聚类算法局部感知重构模型作者推荐,作者树形结构表达、节点特征表达、层次节点位置映射、局部感知重构模型建立,树形结构表示作者转化为统一的向量表示,向量包含作者相关信息作者层次结构信息。作者信息统一向量,相关作者推荐检索。树形结构表达;节点特征表达;层次节点位置映射;建立求解局部感知重构模型;树形结构统一向量;基于内容作者推荐检索。 高质量“卡脖子”专利(有权-审定授权)
2 CN201811300287.4 本申请提供了一种资源包加密方法、装置、计算机设备及存储介质。该方法包括:获取初始资源包,初始资源包包括多个初始文件;获取分组决策值;若分组决策值为第一预设值,根据预设分组规则对初始资源包的多个初始文件进行分组,以生成多个目标文件组;对多个目标文件组进行编号;根据MD5算法对每一目标文件组进行计算而生成与目标文件组相对应的第一MD5值;根据多个目标文件组的编号和与多个目标文件组相对应的多个第一MD5值,生成第一验证文件;根据预设加密算法对第一验证文件进行加密,以生成第二验证文件;根据预设压缩算法对初始资源包和第二验证文件进行压缩,以生成第一目标压缩件。采用本申请提供的资源包加密方法,可提高资源包的安全级别。 资源包加密。获取初始资源包,初始资源包包括初始文件;获取分组决策值;若分组决策值为预设值,根据预设分组规则对初始资源包的初始文件分组,生成目标文件组;目标文件组编号;根据MD5算法目标文件组计算生成目标文件组MD5值;根据目标文件组编号目标文件组第一MD5值,生成验证文件;根据预设加密算法第一验证文件加密,生成验证文件;根据预设压缩算法初始资源包验证文件压缩,生成目标压缩件。采用提供资源包加密,提高资源包安全级别。 低质量“卡脖子”专利(无权-未缴年费)
Table 2  专利文本预处理
Fig.8  模型实验的程序架构
Fig.9  LSTM训练的Loss变化
Fig.10  BERT训练的Loss变化
编号 发明名称 申请日 申请(专利权)人 IPC号 专利状态
1 一种连接无线网络的方法及装置 20170111 广东美的制冷设备有限公司 H04W48/16 有权-审定授权
2 一种基于云锁电池低电量报警方法及其系统 20170511 广东汇泰龙科技有限公司 H04L29/08 有权-审定授权
3 一种基于多个移动通讯终端的云锁指纹开锁的方法及系统 20170511 广东汇泰龙科技有限公司 H04L29/06 有权-审定授权
4 企业服务总线的配置方法及其系统 20171115 深圳四方精创资讯股份有限公司 H04L12/40 有权-审定授权
5 针对场馆回波干扰的多点分布式图传接收系统 20180803 深圳博特创新科技有限公司 H04/B110 有权-审定授权
6 一种基于UDP的数据传输方法、终端设备及存储介质 20180328 深圳市网心科技有限公司 H04L29/06 有权-审定授权
7 双参云微物理方案伽马雨滴谱函数高精度快速求解方法 20200120 中国气象局广州热带海洋气象研究所 G06Q10/04 有权-审定授权
8 金属一体骨架冲孔音膜圈及其制作工艺 20180529 东莞市新律电子有限公司 H04R9/06 审中-实质审查
9 广播信号覆盖区的网格划分方法、服务器及存储介质 20200519 深圳思凯微电子有限公司 H04W4/06 审中-实质审查
10 宏块类型判定方法、视频转码方法、电子设备和存储介质 20180503 深圳市网心科技有限公司 H04N19/176 审中-实质审查
11 可见光通信设备测试系统 20191224 中国电子产品可靠性与环境试验研究所(工业和信息化部电子第五研究所) H04B10/116 审中-实质审查
12 一种基于无线通信协议的基站集群系统及实现方法 20190619 广州维德科技有限公司 H04W84/08 审中-实质审查
Table 3  高质量“卡脖子”技术专利
编号 模型名称 研究对象 研究对象
数据类型
研究对象示例 训练精度 测试精度 高质量“卡脖子”
专利识别数
1 多元线性回归 专利指标 异质化 申请地址、国际专利分类号、权利要求数量、申请人类型等 76.5% 72.3% 323/5000
2 SVM 81.6% 78.6% 251/5000
3 XGBoost 83.2% 80.1% 245/5000
4 CNN-Linear 申请文件为主;
著录事项信息为辅
同质化 申请文件摘要信息、申请(专利权)及发明名称 83.7% 80.9% 223/5000
5 CNN-LSTM 86.7% 83.2% 198/5000
6 LSTM-Linear 84.1% 82.6% 210/5000
7 BERT-Linear 89.3% 86.3% 176/5000
8 LSTM-Seq-BERT 90.5% 88.1% 137/5000
Table 4  各模型测试表现
[1] 王东京. 新中国成立以来基本经济制度形成发展的理论逻辑与实践逻辑[J]. 管理世界, 2022, 38(3): 1-8.
[1] (Wang Dongjing. Theoretical Logic and Practical Logic of the Formation and Development of Basic Economic System Since the Founding of New China[J]. Journal of Management World, 2022, 38(3): 1-8.)
[2] 宋立丰, 区钰贤, 王静, 等. 基于重大科技工程的“卡脖子”技术突破机制研究[J]. 科学学研究, 2022, 40(11): 1991-2000.
[2] (Song Lifeng, Ou Yuxian, Wang Jing, et al. Research on the Breakthrough Mechanism of “Stuck Necking” Technology Based on Major Scientific and Technological Projects[J]. Studies in Science of Science, 2022, 40(11): 1991-2000.)
[3] 阳镇, 陈劲, 李纪珍. 数字经济时代下的全球价值链:趋势、风险与应对[J]. 经济学家, 2022(2): 64-73.
[3] (Yang Zhen, Chen Jin, Li Jizhen. Global Value Chain in the Era of Digital Economy: Trends, Risks and Countermeasures[J]. Economist, 2022(2): 64-73.)
[4] 马兰梦, 袁飞, 李珑. “卡脖子”问题的情报学研究模式探索——以芯片光刻领域为例[J]. 科技管理研究, 2022, 42(2): 225-234.
[4] (Ma Lanmeng, Yuan Fei, Li Long. Probing into the Research Mode of Information Science on the Problem of “Bottleneck”: Taking the Field of Chip Lithography as an Example[J]. Science and Technology Management Research, 2022, 42(2): 225-234.)
[5] 汪发元. 构建“双循环”新发展格局的关键议题与路径选择[J]. 改革, 2021(7): 64-74.
[5] (Wang Fayuan. The Key Issues and Path Choice of Constructing the New Development Pattern of “Dual Circulation”[J]. Reform, 2021(7): 64-74.)
[6] 陈劲, 阳镇, 朱子钦. “十四五”时期“卡脖子”技术的破解:识别框架、战略转向与突破路径[J]. 改革, 2020(12): 5-15.
[6] (Chen Jin, Yang Zhen, Zhu Ziqin. The Solution of “Neck Sticking” Technology During the 14th Five-Year Plan Period: Identification Framework, Strategic Change and Breakthrough Path[J]. Reform, 2020(12): 5-15.)
[7] Wang J J, Ye F Y. Probing into the Interactions Between Papers and Patents of New CRISPR/CAS9 Technology: A Citation Comparison[J]. Journal of Informetrics, 2021, 15(4): 101189.
doi: 10.1016/j.joi.2021.101189
[8] Kuhn J M, Teodorescu M H M. The Track One Pilot Program: Who Benefits from Prioritized Patent Examination?[J]. Strategic Entrepreneurship Journal, 2021, 15(2): 185-208.
doi: 10.1002/sej.v15.2
[9] Feng J, Jaravel X. Crafting Intellectual Property Rights: Implications for Patent Assertion Entities, Litigation, and Innovation[J]. American Economic Journal: Applied Economics, 2020, 12(1): 140-181.
[10] 张于喆, 王海成, 杨威, 等. 中国关键核心技术攻坚面临的主要问题和对策建议(笔谈)[J]. 宏观经济研究, 2021(10): 75-116.
[10] Zhang Yuzhe, Wang Haicheng, Yang Wei, et al. The Main Problems Faced by China’s Key Core Technology Attack and Suggestions for Countermeasure(Written Conversation)[J]. Macroeconomics, 2021(10): 75-116.)
[11] Wu H C, Chen H Y, Lee K Y. Unveiling the Core Technology Structure for Companies Through Patent Information[J]. Technological Forecasting and Social Change, 2010, 77(7): 1167-1178.
doi: 10.1016/j.techfore.2010.03.013
[12] Ljungberg D, Bourelos E, McKelvey M. Academic Inventors, Technological Profiles and Patent Value: An Analysis of Academic Patents Owned by Swedish-Based Firms[J]. Industry and Innovation, 2013, 20(5): 473-487.
doi: 10.1080/13662716.2013.824193
[13] Lai K, Chen H C, Chang Y H, et al. A Structured MPA Approach to Explore Technological Core Competence, Knowledge Flow, and Technology Development Through Social Network Patentometrics[J]. Journal of Knowledge Management, 2020, 25(2): 402-432.
doi: 10.1108/JKM-01-2020-0037
[14] Trappey A J C, Trappey C V, Wu J L, et al. Intelligent Compilation of Patent Summaries Using Machine Learning and Natural Language Processing Techniques[J]. Advanced Engineering Informatics, 2020, 43: 101027.
doi: 10.1016/j.aei.2019.101027
[15] 佟昕瑀, 赵蕊洁, 路永和. 基于预训练模型的多标签专利分类研究[J]. 数据分析与知识发现, 2022, 6(2/3): 129-137.
[15] (Tong Xinyu, Zhao Ruijie, Lu Yonghe. Multi-Label Patent Classification with Pre-Training Model[J]. Data Analysis and Knowledge Discovery, 2022, 6(2/3): 129-137.)
[16] 肖悦珺, 李红莲, 张乐, 等. 特征融合的中文专利文本分类方法研究[J]. 数据分析与知识发现, 2022, 6(4): 49-59.
[16] (Xiao Yuejun, Li Honglian, Zhang Le, et al. Classifying Chinese Patent Texts with Feature Fusion[J]. Data Analysis and Knowledge Discovery, 2022, 6(4): 49-59.)
[17] 关鹏, 王曰芬, 傅柱, 等. 基于专利合作网络的研发团队识别及创新产出影响研究[J]. 数据分析与知识发现, 2022, 6(5): 99-111.
[17] (Guan Peng, Wang Yuefen, Fu Zhu, et al. Identifying R & D Teams and Innovations with Patent Collaboration Networks[J]. Data Analysis and Knowledge Discovery, 2022, 6(5): 99-111.)
[18] Nagler M, Sorg S. The Disciplinary Effect of Post-Grant Review—Causal Evidence from European Patent Opposition[J]. Research Policy, 2020, 49(3): 103915.
doi: 10.1016/j.respol.2019.103915
[19] 俞琰, 朱晟忱. 融入限定关系的专利关键词抽取方法[J]. 数据分析与知识发现, 2022, 6(10): 57-67.
[19] (Yu Yan, Zhu Shengchen. Extracting Patent Keywords by Integrating Restriction Relationship[J]. Data Analysis and Knowledge Discovery, 2022, 6(10): 57-67.)
[20] WIPO. International Patent Classification Agreement[EB/OL].[2022-06-01]. https://www.wipo.int/treaties/zh/classification/strasbourg/.
[21] 专利审查指南[EB/OL].[2022-06-01]. http://www.cypatent.com/cn/sczn.htm.
[21] (Patent Examination Guide[EB/OL].[2022-06-01]. http://www.cypatent.com/cn/sczn.htm.)
[22] 熊晓琴, 成艾国. 复合价值导向的汽车专利布局优化研究[J]. 系统工程理论与实践, 2020, 40(11): 3000-3008.
doi: 10.12011/1000-6788-2019-2847-09
[22] (Xiong Xiaoqin, Cheng Aiguo. Research on Compound Value-Oriented Optimization of Automobile Patent Layout[J]. Systems Engineering-Theory & Practice, 2020, 40(11): 3000-3008.)
doi: 10.12011/1000-6788-2019-2847-09
[23] 刘大勇, 孟悄然, 段文斌. 科技成果转化对经济新动能培育的影响机制——基于230个城市专利转化的观测与实证分析[J]. 管理科学学报, 2021, 24(7): 49-65.
[23] (Liu Dayong, Meng Qiaoran, Duan Wenbin. The Impact of Scientific and Technological Achievements Transformation on the Cultivation of New Economic Driving Force: Evidence from 230 Cities in China[J]. Journal of Management Sciences in China, 2021, 24(7): 49-65.)
[24] Liu W D, Qiao W B, Wang Y, et al. Patent Transformation Opportunity to Realize Patent Value: Discussion About the Conditions to be Used or Exchanged[J]. Information Processing & Management, 2021, 58(4): 102582.
doi: 10.1016/j.ipm.2021.102582
[25] Trappey A J C, Trappey C V, Govindarajan U H, et al. Patent Value Analysis Using Deep Learning Models—The Case of IoT Technology Mining for the Manufacturing Industry[J]. IEEE Transactions on Engineering Management, 2021, 68(5): 1334-1346.
doi: 10.1109/TEM.2019.2957842
[26] Wang J L, Fan Y, Zhang H, et al. Technology Hotspot Tracking: Topic Discovery and Evolution of China’s Blockchain Patents Based on a Dynamic LDA Model[J]. Symmetry, 2021, 13(3): 415.
doi: 10.3390/sym13030415
[27] 袁博, 刘文兴, 张鹏程. 知识产权保护能力对重大科研项目技术创新影响的权变模型[J]. 系统工程理论与实践, 2014, 34(11): 2965-2973.
doi: 10.12011/1000-6788(2014)11-2965
[27] (Yuan Bo, Liu Wenxing, Zhang Pengcheng. The Influence of the Protection Ability of Intellectual Property on Large Scientific Project Technology Innovation: A Contingent Model[J]. Systems Engineering-Theory & Practice, 2014, 34(11): 2965-2973.)
doi: 10.12011/1000-6788(2014)11-2965
[28] Huang Z X, Xie Z P. A Patent Keywords Extraction Method Using TextRank Model with Prior Public Knowledge[J]. Complex & Intelligent Systems, 2022, 8(1): 1-12.
[29] Chung P, Sohn S Y. Early Detection of Valuable Patents Using a Deep Learning Model: Case of Semiconductor Industry[J]. Technological Forecasting and Social Change, 2020, 158: 120146.
doi: 10.1016/j.techfore.2020.120146
[30] Zhu H M, He C H, Fang Y, et al. Patent Automatic Classification Based on Symmetric Hierarchical Convolution Neural Network[J]. Symmetry, 2020, 12(2): 186.
doi: 10.3390/sym12020186
[31] Wu H Q, Shen G Q, Lin X, et al. A Transformer-Based Deep Learning Model for Recognizing Communication-Oriented Entities from Patents of ICT in Construction[J]. Automation in Construction, 2021, 125: 103608.
doi: 10.1016/j.autcon.2021.103608
[32] Ni X, Samet A, Cavallucci D. Similarity-Based Approach for Inventive Design Solutions Assistance[J]. Journal of Intelligent Manufacturing, 2022, 33(6): 1681-1698.
doi: 10.1007/s10845-021-01749-4
[33] Sherstinsky A. Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) Network[J]. Physica D: Nonlinear Phenomena, 2020, 404: 132306.
doi: 10.1016/j.physd.2019.132306
[34] Nguyen H D, Tran K P, Thomassey S, et al. Forecasting and Anomaly Detection Approaches Using LSTM and LSTM Autoencoder Techniques with the Applications in Supply Chain Management[J]. International Journal of Information Management, 2021, 57: 102282.
doi: 10.1016/j.ijinfomgt.2020.102282
[35] Di Gennaro G, Buonanno A, Palmieri F A N. Considerations About Learning Word2Vec[J]. The Journal of Supercomputing, 2021, 77(11): 12320-12335.
doi: 10.1007/s11227-021-03743-2
[36] Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010.
[37] Wan C X, Li B. Financial Causal Sentence Recognition Based on BERT-CNN Text Classification[J]. The Journal of Supercomputing, 2022, 78(5): 6503-6527.
doi: 10.1007/s11227-021-04097-5
[38] Sun F, Liu J, Wu J, et al. BERT4Rec:Sequential Recommendation with Bidirectional Encoder Representations from Transformer[C]// Proceedings of the 28th ACM International Conference on Information and Knowledge Management. New York: ACM, 2019: 1441-1450.
[39] Patil A, Viquerat J, Larcher A, et al. Robust Deep Learning for Emulating Turbulent Viscosities[J]. Physics of Fluids, 2021, 33(10): 105118.
doi: 10.1063/5.0064458
[40] Zaki G, Gudla P R, Lee K, et al. A Deep Learning Pipeline for Nucleus Segmentation[J]. Cytometry Part A, 2020, 97(12): 1248-1264.
doi: 10.1002/cyto.a.24257 pmid: 33141508
[41] Wang X, Wang K, Lian S G. A Survey on Face Data Augmentation for the Training of Deep Neural Networks[J]. Neural Computing and Applications, 2020, 32(19): 15503-15531.
doi: 10.1007/s00521-020-04748-3
[42] Moon T, Son J E. Knowledge Transfer for Adapting Pre-Trained Deep Neural Models to Predict Different Greenhouse Environments Based on a Low Quantity of Data[J]. Computers and Electronics in Agriculture, 2021, 185: 106136.
doi: 10.1016/j.compag.2021.106136
[43] 王玲, 李文昌, 赵梦. 不同类型专利权人的专利失效影响因素研究[J]. 科技管理研究, 2021, 41(19): 149-154.
[43] (Wang Ling, Li Wenchang, Zhao Meng. Research on Influencing Factors of Ineffective Patent of Different Types of Patentees[J]. Science and Technology Management Research, 2021, 41(19): 149-154.)
[44] Krestel R, Chikkamath R, Hewel C, et al. A Survey on Deep Learning for Patent Analysis[J]. World Patent Information, 2021, 65: 102035.
doi: 10.1016/j.wpi.2021.102035
[45] Zimmer L, Lindauer M, Hutter F. Auto-PyTorch: Multi-Fidelity MetaLearning for Efficient and Robust AutoDL[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43(9): 3079-3090.
doi: 10.1109/TPAMI.2021.3067763
[46] Paszke A, Gross S, Massa F, et al. PyTorch: An Imperative Style, High-Performance Deep Learning Library[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019, 32: 8026-8037.
[1] 冯立杰,刘可辉,王金凤,张珂,张世斌. 基于知识网络与多维技术创新地图的技术机会识别路径研究与应用*[J]. 数据分析与知识发现, 2023, 7(8): 62-77.
[2] 王诗炜, 陈春. 基于科学论文和技术专利关联关系识别潜在知识发现方法研究综述*[J]. 数据分析与知识发现, 2023, 7(7): 18-31.
[3] 施国良, 周抒, 王云峰, 施春江, 刘亮. 基于改进多头注意力机制的专利文本摘要生成研究*[J]. 数据分析与知识发现, 2023, 7(6): 61-72.
[4] 俞琰, 王丽, 郑斯煜. 融入术语与层级信息的专利关键短语抽取方法研究[J]. 数据分析与知识发现, 2023, 7(6): 99-112.
[5] 本妍妍, 庞雪芹. 融入词性的医疗命名实体识别研究*[J]. 数据分析与知识发现, 2023, 7(5): 123-132.
[6] 徐康, 余胜男, 陈蕾, 王传栋. 基于语言学知识增强的自监督式图卷积网络的事件关系抽取方法*[J]. 数据分析与知识发现, 2023, 7(5): 92-104.
[7] 邓娜, 何昕洋, 陈伟杰, 陈旭. MPMFC:一种融合网络邻里结构特征和专利语义特征的中药专利分类模型*[J]. 数据分析与知识发现, 2023, 7(4): 145-158.
[8] 王松, 徐雅静, 刘新民. 基于Conv-BiLSTM模型的虚拟社区用户生成内容创新价值识别问题研究:交互协同的视角*[J]. 数据分析与知识发现, 2023, 7(4): 77-88.
[9] 苏明星, 吴厚月, 李健, 黄菊, 张顺香. 基于多层交互注意力机制的商品属性抽取*[J]. 数据分析与知识发现, 2023, 7(2): 108-118.
[10] 赵一鸣, 潘沛, 毛进. 基于任务知识融合与文本数据增强的医学信息查询意图强度识别研究*[J]. 数据分析与知识发现, 2023, 7(2): 38-47.
[11] 王宇飞, 张智雄, 赵旸, 张梦婷, 李雪思. 中文科技论文标题自动生成系统的设计与实现*[J]. 数据分析与知识发现, 2023, 7(2): 61-71.
[12] 张思阳, 魏苏波, 孙争艳, 张顺香, 朱广丽, 吴厚月. 基于多标签Seq2Seq模型的情绪-原因对提取模型*[J]. 数据分析与知识发现, 2023, 7(2): 86-96.
[13] 王代琳, 刘丽娜, 刘美玲, 刘亚秋. 基于图书目录注意力机制的读者偏好分析与推荐模型研究[J]. 数据分析与知识发现, 2022, 6(9): 138-152.
[14] 张治鹏, 毛煜升, 张李义. 基于领域ERNIE和BiLSTM模型的酒店评论观点原因分类研究*[J]. 数据分析与知识发现, 2022, 6(9): 65-76.
[15] 胡吉明, 钱玮, 文鹏, 吕晓光. 基于结构功能和实体识别的文本语义表示——以病历领域为例*[J]. 数据分析与知识发现, 2022, 6(8): 110-121.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn