Please wait a minute...
Advanced Search
数据分析与知识发现  2023, Vol. 7 Issue (9): 114-124     https://doi.org/10.11925/infotech.2096-3467.2022.0918
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
融合SPO语义和句法信息的事件检测方法*
何丽,杨美华(),刘璐瑶
天津财经大学理工学院 天津 300222
Detecting Events with SPO Semantic and Syntactic Information
He Li,Yang Meihua(),Liu Luyao
College of Science and Technology, Tianjin University of Finance and Economics, Tianjin 300222, China
全文: PDF (2592 KB)   HTML ( 11
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】利用SPO三元组语义信息和依存句法关系类型信息提升事件检测模型的性能。【方法】融合SPO三元组语义信息和依存句法关系类型信息构造事件检测模型EDMC3S。该模型以语句的依存句法树为基础生成SPO三元组和依存句法关系类型矩阵,使用多头注意力机制对SPO三元组进行语义特征强化,利用自注意力机制对不同的依存关系类型进行权重分配后,通过多阶图注意力聚合网络对语句的全局句法和语义特征进行提取,最后使用一个全连接层对SPO三元组语义特征和语句全局特征进行整合。【结果】在ACE2005数据集上的实验结果显示,EDMC3S事件检测模型在触发词识别与事件类型分类这两个子任务中获得了较好的分类性能。在P、R和F1值三个评价指标上触发词识别分别达到80.6%、82.4%和81.5%,事件类型分类分别达到78.7%、80.1%和79.4%。【局限】仅在ACE2005数据集上进行实验验证。【结论】SPO三元组语义特征和词之间依存句法关系类型的引入能够提升事件检测中的触发词识别和事件类型分类效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
何丽
杨美华
刘璐瑶
关键词 事件检测SPO语义信息句法信息注意力机制多阶图注意力聚合网络    
Abstract

[Objective] This paper utilizes the SPO triples and the dependency syntax to improve the performance of the event detection model.[Methods] We constructed an event detection model EDMC3S combining the semantic information of SPO triples and the type information of dependency syntactic relationship. First, the model generates SPO triples and dependency syntax relation type weight matrix based on the dependency syntax tree of the sentence. Then, we used a multi-head attention mechanism to strengthen the semantic features of SPO triples and a self-attention mechanism to distribute the weight of different dependency relation types. Third, we extracted the global syntactic and semantic features through the multi-order graph attention aggregation network. Finally, we integrated the semantic features of SPO triples and the global features of statements with a connection layer. [Results] We examined the new model on the ACE2005 dataset, and it achieved better classification performance in the two sub-tasks of trigger word recognition and event type classification. On the three evaluation indexes of P, R, and F1, the recognition of trigger words reached 80.6%, 82.4%, and 81.5%, respectively, and the classification of event types reached 78.7%, 80.1%, and 79.4%, respectively. [Limitations] We need to evaluate the new model with more datasets. [Conclusions] The proposed model can improve the effect of event detection in trigger word recognition and event type classification.

Key wordsEvent Detection    SPO Semantic Information    Syntactic Information    Attention Mechanism    Multi-Order Graph Attention Aggregation Networks
收稿日期: 2022-08-30      出版日期: 2023-03-21
ZTFLH:  TP391  
  G350  
基金资助:*国家社会科学基金青年项目(19CGL025)
通讯作者: 杨美华,ORCID:0000-0001-6789-3593,E-mail:MeiHuaCandice@163.com。   
引用本文:   
何丽, 杨美华, 刘璐瑶. 融合SPO语义和句法信息的事件检测方法*[J]. 数据分析与知识发现, 2023, 7(9): 114-124.
He Li, Yang Meihua, Liu Luyao. Detecting Events with SPO Semantic and Syntactic Information. Data Analysis and Knowledge Discovery, 2023, 7(9): 114-124.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022.0918      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2023/V7/I9/114
Fig.1  EDMC3S模型结构
Fig.2  SPO三元组生成示例
Fig.3  三阶图注意力聚合模块
参数名 数量 参数名 数量
词向量 300维 多头注意力头数 3
命名实体识别类型向量 50维 语句最大长度 80
词性向量 50维 依存关系类型 95种
位置向量 50维 Dropout 0.2
GAT阶数 3 学习率 2E-5
Table 1  模型参数设置
模型名称 触发词识别 事件类型分类
P R F1 P R F1
DMCNN 80.4 67.7 73.5 75.6 63.6 69.1
Bi-RNN 68.5 75.7 71.9 66.0 73.0 69.3
HNN 80.8 71.5 75.9 84.6 64.9 73.4
GCN-ED 74.9 75.6 75.2 77.9 68.8 73.1
MOGANED 78.8 76.7 77.7 79.5 72.3 75.7
GatedGCN 78.7 79.5 79.1 78.8 76.3 77.6
EDMC3S 80.6 82.4 81.5 78.7 80.1 79.4
Table 2  不同模型的准确率、召回率和F1值对比(%)
模型名称 触发词识别 事件类型分类
P R F1 P R F1
MOGANED(附关系标签) 78.1 76.5 77.3 77.1 76.3 76.7
w/o SPO三元组 78.3 79.5 78.9 76.7 78.1 77.4
w/o SPO三元组+多头注意力模块 79.6 80.8 80.2 78.4 78.6 78.5
w/o依存关系类型自注意力模块 78.4 80.2 79.3 76.9 78.9 77.9
EDMC3S 80.6 82.4 81.5 78.7 80.1 79.4
Table 3  在消融实验中的性能对比(%)
Fig.4  依存关系类型自注意力结果可视化
[1] Liang Z Z, Noriega-Atala E, Morrison C, et al. Low Resource Causal Event Detection from Biomedical Literature[C]// Proceedings of the 21st Workshop on Biomedical Language Processing. PA, USA: ACL, 2022: 252-263.
[2] Wang Y, Xia N, Luo X F, et al. Global Semantics with Boundary Constraint Knowledge Graph for Chinese Financial Event Detection[C]// Proceedings of the IEEE International Conference on Big Knowledge. IEEE, 2022: 281-289.
[3] Alfalqi K, Bellaiche M. An Emergency Event Detection Ensemble Model Based on Big Data[J]. Big Data and Cognitive Computing, 2022, 6(2): Article No.42.
[4] Liu X, Luo Z C, Huang H Y. Jointly Multiple Events Extraction via Attention-Based Graph Information Aggregation[OL]. arXiv Preprint, arXiv: 1809.09078.
[5] Kipf T N, Welling M. Semi-Supervised Classification with Graph Convolutional Networks[OL]. arXiv Preprint, arXiv: 1609.02907.
[6] Yan H R, Jin X L, Meng X B, et al. Event Detection with Multi-Order Graph Convolution and Aggregated Attention[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. PA, USA: ACL, 2019: 5766-5770.
[7] Tong M H, Xu B, Hou L, et al. Leveraging Multi-Head Attention Mechanism to Improve Event Detection[A]//Sun M, Huang X, Ji H, et al. China National Conference on Chinese Computational Linguistics[M]. Cham: Springer, 2019: 268-280.
[8] Zhang Z C, Zhang R F. Combined Self-Attention Mechanism for Biomedical Event Trigger Identification[C]// Proceedings of the IEEE International Conference on Bioinformatics and Biomedicine. IEEE, 2020: 1009-1012.
[9] Grishman R, Westbrook D, Meyers A. NYU’s English ACE 2005 System Description[J]. Journal on Satisfiability, Boolean Modeling and Computation, 2005, 51(11): 1927-1928.
[10] Ahn D. The Stages of Event Extraction[C]// Proceedings of the 2006 Workshop on Annotating and Reasoning About Time and Events. NJ, USA: ACL, 2006: 1-8.
[11] Ji H, Grishman R. Refining Event Extraction Through Cross-Document Inference[C]// Proceedings of the 46th Annual Meeting of the Association for Computational Linguistics. 2008: 254-262.
[12] Liao S S, Grishman R. Using Document Level Cross-Event Inference to Improve Event Extraction[C]// Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. New York: ACM, 2010: 789-797.
[13] Hong Y, Zhang J F, Ma B, et al. Using Cross-Entity Inference to Improve Event Extraction[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies. 2011: 1127-1136.
[14] Li Q, Ji H, Huang L. Joint Event Extraction via Structured Prediction with Global Features[C]// Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. 2013: 73-82.
[15] Nguyen T H, Grishman R. Event Detection and Domain Adaptation with Convolutional Neural Networks[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. PA, USA: ACL, 2015: 365-371.
[16] Chen Y B, Xu L H, Liu K, et al. Event Extraction via Dynamic Multi-Pooling Convolutional Neural Networks[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. PA, USA: ACL, 2015: 167-176.
[17] Nguyen T H, Cho K, Grishman R. Joint Event Extraction via Recurrent Neural Networks[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. PA, USA: ACL, 2016: 300-309.
[18] Rahul P V S S, Sahu S K, Anand A. Biomedical Event Trigger Identification Using Bidirectional Recurrent Neural Network Based Models[OL]. arXiv Preprint, arXiv: 1705.09516.
[19] Hochreiter S, Schmidhuber J. Long Short-Term Memory[J]. Neural Computation, 1997, 9(8): 1735-1780.
doi: 10.1162/neco.1997.9.8.1735 pmid: 9377276
[20] Chung J, Gulcehre C, Cho K, et al. Empirical Evaluation of Gated Recurrent Neural Networks on Sequence Modeling[OL]. arXiv Preprint, arXiv: 1412.3555.
[21] Feng X C, Qin B, Liu T. A Language-Independent Neural Network for Event Detection[J]. Science China Information Sciences, 2018, 61(9): Article No.092106.
[22] Bahdanau D, Cho K, Bengio Y. Neural Machine Translation by Jointly Learning to Align and Translate[OL]. arXiv Preprint, arXiv: 1409.0473.
[23] Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. New York: ACM, 2017: 6000-6010.
[24] Li L S, Liu Y. Exploiting Argument Information to Improve Biomedical Event Trigger Identification via Recurrent Neural Networks and Supervised Attention Mechanisms[C]// Proceedings of the 2017 IEEE International Conference on Bioinformatics and Biomedicine. IEEE, 2017: 565-568.
[25] Mu X F, Xu A P. A Character-Level BiLSTM-CRF Model with Multi-Representations for Chinese Event Detection[J]. IEEE Access, 2019, 7: 146524-146532.
doi: 10.1109/Access.6287639
[26] 余传明, 林虹君, 张贞港. 基于多任务深度学习的实体和事件联合抽取模型[J]. 数据分析与知识发现, 2022, 6(2/3): 117-128.
[26] (Yu Chuanming, Lin Hongjun, Zhang Zhengang. Joint Extraction Model for Entities and Events with Multi-Task Deep Learning[J]. Data Analysis and Knowledge Discovery, 2022, 6(2/3): 117-128.)
[27] Nguyen T, Grishman R. Graph Convolutional Networks with Argument-Aware Pooling for Event Detection[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence and 30th Innovative Applications of Artificial Intelligence Conference and 8th AAAI Symposium on Educational Advances in Artificial Intelligence. 2018: 5900-5907.
[28] Guo Z J, Zhang Y, Lu W. Attention Guided Graph Convolutional Networks for Relation Extraction[OL]. arXiv Preprint, arXiv: 1906.07510.
[29] Veličković P, Cucurull G, Casanova A, et al. Graph Attention Networks[OL]. arXiv Preprint, arXiv: 1710.10903.
[30] Cui S Y, Yu B W, Liu T W, et al. Edge-Enhanced Graph Convolution Networks for Event Detection with Syntactic Relation[OL]. arXiv Preprint, arXiv: 2002.10757.
[31] 欧阳纯萍, 邹康, 刘永彬, 等. 融合多跳关系标签与依存句法结构信息的事件检测模型[J]. 计算机应用研究, 2022, 39(1): 43-47.
[31] (Ouyang Chunping, Zou Kang, Liu Yongbin, et al. Event Detection Model Based on Integrating of Multi-Hop Relation Labels and Dependency Syntactic Structure[J]. Application Research of Computers, 2022, 39(1): 43-47.)
[32] Lai V D, Nguyen T N, Nguyen T H. Event Detection: Gate Diversity and Syntactic Importance Scores for Graph Convolution Neural Networks[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing. 2020: 5405-5411.
[33] Li Q, Ji H, Huang L. Joint Event Extraction via Structured Prediction with Global Features[C]// Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics. 2013: 73-82.
[34] 陈佳丽, 洪宇, 王捷, 等. 利用门控机制融合依存与语义信息的事件检测方法[J]. 中文信息学报, 2020, 34(8): 51-60.
[34] (Chen Jiali, Hong Yu, Wang Jie, et al. Combination of Dependency and Semantic Information via Gated Mechanism for Event Detection[J]. Journal of Chinese Information Processing, 2020, 34(8): 51-60.)
[35] Mikolov T, Chen K, Corrado G, et al. Efficient Estimation of Word Representations in Vector Space[OL]. arXiv Preprint, arXiv: 1301.3781.
[36] Qi P, Dozat T, Zhang Y H, et al. Universal Dependency Parsing from Scratch[OL]. arXiv Preprint, arXiv: 1901.10457.
[37] Finkel J R, Grenager T, Manning C. Incorporating Non-Local Information into Information Extraction Systems by Gibbs Sampling[C]// Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics. NJ, USA: ACL, 2005: 363-370.
[1] 韩普, 顾亮, 叶东宇, 陈文祺. 基于多任务和迁移学习的中文医学文献实体识别研究*[J]. 数据分析与知识发现, 2023, 7(9): 136-145.
[2] 徐康, 余胜男, 陈蕾, 王传栋. 基于语言学知识增强的自监督式图卷积网络的事件关系抽取方法*[J]. 数据分析与知识发现, 2023, 7(5): 92-104.
[3] 韩普, 仲雨乐, 陆豪杰, 马诗雯. 基于对抗性迁移学习的药品不良反应实体识别研究*[J]. 数据分析与知识发现, 2023, 7(3): 131-141.
[4] 周宁, 钟娜, 靳高雅, 刘斌. 基于混合词嵌入的双通道注意力网络中文文本情感分析*[J]. 数据分析与知识发现, 2023, 7(3): 58-68.
[5] 苏明星, 吴厚月, 李健, 黄菊, 张顺香. 基于多层交互注意力机制的商品属性抽取*[J]. 数据分析与知识发现, 2023, 7(2): 108-118.
[6] 王金政, 杨颖, 余本功. 基于多头协同注意力机制的客户投诉文本分类模型*[J]. 数据分析与知识发现, 2023, 7(1): 128-137.
[7] 彭成, 张春霞, 张鑫, 郭倞涛, 牛振东. 基于实体多元编码的时序知识图谱推理*[J]. 数据分析与知识发现, 2023, 7(1): 138-149.
[8] 赵蕊洁, 佟昕瑀, 刘小桦, 路永和. 基于神经网络的医药科技论文实体识别与标注研究*[J]. 数据分析与知识发现, 2022, 6(9): 100-112.
[9] 唐娇, 张力生, 桑春艳. 基于潜在主题分布和长、短期用户表示的新闻推荐模型*[J]. 数据分析与知识发现, 2022, 6(9): 52-64.
[10] 赵鹏武, 李志义, 林小琦. 基于注意力机制和卷积神经网络的中文人物关系抽取与识别*[J]. 数据分析与知识发现, 2022, 6(8): 41-51.
[11] 张若琦, 申建芳, 陈平华. 结合GNN、Bi-GRU及注意力机制的会话序列推荐*[J]. 数据分析与知识发现, 2022, 6(6): 46-54.
[12] 叶瀚,孙海春,李欣,焦凯楠. 融合注意力机制与句向量压缩的长文本分类模型[J]. 数据分析与知识发现, 2022, 6(6): 84-94.
[13] 郭航程, 何彦青, 兰天, 吴振峰, 董诚. 基于Paragraph-BERT-CRF的科技论文摘要语步功能信息识别方法研究*[J]. 数据分析与知识发现, 2022, 6(2/3): 298-307.
[14] 徐月梅, 樊祖薇, 曹晗. 基于标签嵌入注意力机制的多任务文本分类模型*[J]. 数据分析与知识发现, 2022, 6(2/3): 105-116.
[15] 余传明, 林虹君, 张贞港. 基于多任务深度学习的实体和事件联合抽取模型*[J]. 数据分析与知识发现, 2022, 6(2/3): 117-128.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn