Please wait a minute...
Advanced Search
数据分析与知识发现  2023, Vol. 7 Issue (12): 114-124     https://doi.org/10.11925/infotech.2096-3467.2022.1098
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
融合物品受众特征的深度学习推荐模型*
王永,陈俊谕,刘岽,邓江洲()
重庆邮电大学经济管理学院 重庆 400065
A Deep Learning Recommendation Model with Item Audience Feature
Wang Yong,Chen Junyu,Liu Dong,Deng Jiangzhou()
School of Economics and Management, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
全文: PDF (1357 KB)   HTML ( 6
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】为有效捕获用户与物品交互数据中蕴含的协同信息和高阶特征,提出一种融合物品受众特征的深度学习推荐模型。【方法】利用注意力机制从物品与用户的历史交互信息中自适应地构建出物品的个性化受众特征,并将其作为对目标用户偏好预测的重要补充信息引入推荐模型中。同时,设计显式的特征交叉并引入残差连接以丰富高阶特征信息的多样性。【结果】在三个公开数据集上的实验显示,当推荐列表长度为10时,相对于次优对比方法,本文模型在Precision、Recall、F1和NDCG等4个性能评价指标上分别最高增长9.1、9.4、9.2、12.1个百分点。【局限】模型性能一定程度上依赖于用户与物品的历史交互数据量。【结论】本文模型能很好地兼顾泛化能力和记忆能力,展现出良好的推荐性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王永
陈俊谕
刘岽
邓江洲
关键词 注意力机制物品受众特征交叉神经网络推荐模型    
Abstract

[Objective] This paper proposes a deep learning recommendation model with item audience features. It captures collaborative information and the high-order features from users and items the interactions. [Methods] First,we used the attention mechanism to analyze the historical interaction information between items and users. Then, the system adaptively constructed personalized audience features of items. Third, we introduced these features to the model as important supplementary information for preference predictions. We also developed an explicit feature crossing and introduced residual connections to enrich the high-order features. [Results] We examined the new model with three public datasets. It improved the Precision, Recall, F1, and NDCG by up to 9.1%, 9.4%, 9.2%, and 12.1% compared with the sub-optimal method (the recommendation length = 10). [Limitations] The performance of our model relies mainly on the historical interaction data volumes. [Conclusions] The proposed model improves the recommendation quality and shows good application potential.

Key wordsAttention Mechanism    Item Audience    Feature Crossing    Neural Networks    Recommendation Model
收稿日期: 2022-10-20      出版日期: 2023-09-12
ZTFLH:  TP391  
  G350  
基金资助:*国家自然科学基金项目(62272077);国家自然科学基金项目(72301050);教育部人文社科规划项目(20YJAZH102)
通讯作者: 邓江洲,ORCID:0000-0003-4761-132X,E-mail:dengjz@cqupt.edu.cn。   
引用本文:   
王永, 陈俊谕, 刘岽, 邓江洲. 融合物品受众特征的深度学习推荐模型*[J]. 数据分析与知识发现, 2023, 7(12): 114-124.
Wang Yong, Chen Junyu, Liu Dong, Deng Jiangzhou. A Deep Learning Recommendation Model with Item Audience Feature. Data Analysis and Knowledge Discovery, 2023, 7(12): 114-124.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022.1098      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2023/V7/I12/114
Fig.1  模型框架
Fig.2  采用二层结构的特征交互层
数据集 用户数 项目数 评分数 稀疏度
ML-100k 943 1 682 100 000 93.7%
ML-1M 6 040 3 706 1 000 209 95.5%
YM 8 089 1 000 270 121 96.6%
Table 1  数据集统计情况
Fig.3  变体模型性能对比
超参数\\数据集 ML-100k ML-1M YM
学习率 0.003 0.000 3 0.003
向量维度d 8 16 8
Dropout比率 0.2 0.4 0.4
正则项系数λ 0.08 0.05 0.08
神经元数量 48 96 48
Table 2  实验参数设置
Fig.4  模型性能指标对比
数据集 模型 NDCG@4 NDCG@6 NDCG@8 NDCG@10
ML-100k 本文模型 0.611 0.574 0.549 0.532
SimpleX 0.551 0.532 0.513 0.496
AFN 0.536 0.514 0.496 0.483
DCF 0.529 0.506 0.485 0.471
NCF 0.515 0.495 0.475 0.462
MF 0.475 0.460 0.446 0.431
ML-1M 本文模型 0.429 0.405 0.386 0.373
SimpleX 0.398 0.379 0.362 0.349
AFN 0.391 0.367 0.349 0.336
DCF 0.362 0.346 0.334 0.323
NCF 0.358 0.338 0.323 0.311
MF 0.348 0.326 0.311 0.298
YM 本文模型 0.183 0.165 0.153 0.142
SimpleX 0.158 0.144 0.135 0.127
AFN 0.139 0.129 0.121 0.114
DCF 0.122 0.115 0.109 0.104
NCF 0.113 0.107 0.102 0.097
MF 0.101 0.095 0.091 0.089
Table3  不同数据集上的NDCG值
[1] 张玉洁, 董政, 孟祥武. 个性化广告推荐系统及其应用研究[J]. 计算机学报, 2021, 44(3): 531-563.
[1] (Zhang Yujie, Dong Zheng, Meng Xiangwu. Research on Personalized Advertising Recommendation Systems and Their Applications[J]. Chinese Journal of Computers, 2021, 44(3): 531-563.)
[2] Koren Y, Rendle S, Bell R. Advances in Collaborative Filtering[A]//Ricci F, Rokach L, Shapira B. Recommender Systems Handbook[M]. New York: Springer, 2022: 91-142.
[3] Koren Y, Bell R, Volinsky C. Matrix Factorization Techniques for Recommender Systems[J]. Computer, 2009, 42(8): 30-37.
[4] 李振宇, 李树青. 嵌入隐式相似群的深度协同过滤算法[J]. 数据分析与知识发现, 2021, 5(11): 124-134.
[4] (Li Zhenyu, Li Shuqing. Deep Collaborative Filtering Algorithm with Embedding Implicit Similarity Groups[J]. Data Analysis and Knowledge Discovery, 2021, 5(11): 124-134.)
[5] Wen X L. Using Deep Learning Approach and IoT Architecture to Build the Intelligent Music Recommendation System[J]. Soft Computing, 2021, 25(4): 3087-3096.
doi: 10.1007/s00500-020-05364-y
[6] Wang R X, Fu B, Fu G, et al. Deep & Cross Network for Ad Click Predictions[C]// Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM, 2017: 1-7.
[7] He K M, Zhang X Y, Ren S Q, et al. Identity Mappings in Deep Residual Networks[C]// Proceedings of the 14th European Conference on Computer Vision. Cham: Springer, 2016: 630-645.
[8] He X N, Liao L Z, Zhang H W, et al. Neural Collaborative Filtering[C]// Proceedings of the 26th International Conference on World Wide Web. ACM, 2017: 173-182.
[9] Deng Z H, Huang L, Wang C D, et al. DeepCF: A Unified Framework of Representation Learning and Matching Function Learning in Recommender System[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2019.
[10] Chen J W, Wang C, Zhou S, et al. Fast Adaptively Weighted Matrix Factorization for Recommendation with Implicit Feedback[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2020.
[11] Yang M L, Zhou M, Liu J H, et al. HRCF: Enhancing Collaborative Filtering via Hyperbolic Geometric Regularization[C]// Proceedings of the 2022 ACM Web Conference. ACM, 2022: 2462-2471.
[12] Mao K L, Zhu J M, Wang J P, et al. SimpleX: A Simple and Strong Baseline for Collaborative Filtering[C]// Proceedings of the 30th ACM International Conference on Information & Knowledge Management. ACM, 2021: 1243-1252.
[13] Wang R Q, Wu Z D, Lou J G, et al. Attention-Based Dynamic User Modeling and Deep Collaborative Filtering Recommendation[J]. Expert Systems with Applications, 2022, 188: Article No.116036.
[14] He X N, Du X Y, Wang X, et al. Outer Product-Based Neural Collaborative Filtering[OL]. arXiv Preprint, arXiv: 1808.03912.
[15] Su Y X, Zhao Y X, Erfani S, et al. Detecting Arbitrary Order Beneficial Feature Interactions for Recommender Systems[C]// Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. ACM, 2022: 1676-1686.
[16] Cheng W Y, Shen Y Y, Huang L P. Adaptive Factorization Network: Learning Adaptive-Order Feature Interactions[C]// Proceedings of the AAAI Conference on Artificial Intelligence. 2020.
[17] Chen G Y, Gu T P, Lu J W, et al. Person Re-Identification via Attention Pyramid[J]. IEEE Transactions on Image Processing: A Publication of the IEEE Signal Processing Society, 2021, 30: 7663-7676.
doi: 10.1109/TIP.2021.3107211
[18] Xu H Y, Ding Y H, Sun J, et al. Dynamic Group Recommendation Based on the Attention Mechanism[J]. Future Internet, 2019, 11(9): Article No.198.
[19] 李琳, 唐守廉. 基于多层注意力表示的音乐推荐模型[J]. 电子学报, 2020, 48(9): 1672-1679.
doi: 10.3969/j.issn.0372-2112.2020.09.002
[19] (Li Lin, Tang Shoulian. Hierarchical Attention Representation Model for Music Recommendation[J]. Acta Electronica Sinica, 2020, 48(9): 1672-1679.)
doi: 10.3969/j.issn.0372-2112.2020.09.002
[20] Ouyang W T, Zhang X W, Li L, et al. Deep Spatio-Temporal Neural Networks for Click-Through Rate Prediction[C]// Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. ACM, 2019: 2078-2086.
[21] Xie R B, Ling C, Wang Y L, et al. Deep Feedback Network for Recommendation[C]// Proceedings of the 29th International Joint Conference on Artificial Intelligence. ACM, 2021: 2519-2525.
[22] Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. ACM, 2017: 6000-6010.
[23] Le Q, Mikolov T. Distributed Representations of Sentences and Documents[C]// Proceedings of the 31st International Conference on Machine Learning. ACM, 2014: 1188-1196.
[24] Cheng H T, Koc L, Harmsen J, et al. Wide & Deep Learning for Recommender Systems[C]// Proceedings of the 1st Workshop on Deep Learning for Recommender Systems. ACM, 2016: 7-10.
[25] Rumelhart D E, Hinton G E, Williams R J. Learning Representations by Back-Propagating Errors[J]. Nature, 1986, 323(6088): 533-536.
doi: 10.1038/323533a0
[1] 何丽, 杨美华, 刘璐瑶. 融合SPO语义和句法信息的事件检测方法*[J]. 数据分析与知识发现, 2023, 7(9): 114-124.
[2] 韩普, 顾亮, 叶东宇, 陈文祺. 基于多任务和迁移学习的中文医学文献实体识别研究*[J]. 数据分析与知识发现, 2023, 7(9): 136-145.
[3] 李洋, 赵吉昌. 基于神经网络的CEO表情分析及其对发布会媒体关注度的影响*[J]. 数据分析与知识发现, 2023, 7(8): 46-61.
[4] 许鑫, 李倩, 姚占雷. 基于图神经网络的技术识别链接预测方法研究*[J]. 数据分析与知识发现, 2023, 7(6): 15-25.
[5] 徐康, 余胜男, 陈蕾, 王传栋. 基于语言学知识增强的自监督式图卷积网络的事件关系抽取方法*[J]. 数据分析与知识发现, 2023, 7(5): 92-104.
[6] 刘欣然, 徐雅斌, 李继先. 网评贴文自动生成方法研究*[J]. 数据分析与知识发现, 2023, 7(4): 101-113.
[7] 韩普, 仲雨乐, 陆豪杰, 马诗雯. 基于对抗性迁移学习的药品不良反应实体识别研究*[J]. 数据分析与知识发现, 2023, 7(3): 131-141.
[8] 李浩君, 吕韵, 汪旭辉, 黄诘雅. 融入情感分析的多层交互深度推荐模型研究*[J]. 数据分析与知识发现, 2023, 7(3): 43-57.
[9] 周宁, 钟娜, 靳高雅, 刘斌. 基于混合词嵌入的双通道注意力网络中文文本情感分析*[J]. 数据分析与知识发现, 2023, 7(3): 58-68.
[10] 裴伟, 孙水发, 李小龙, 鲁际, 杨柳, 吴义熔. 融合领域知识的医学命名实体识别研究*[J]. 数据分析与知识发现, 2023, 7(3): 142-154.
[11] 苏明星, 吴厚月, 李健, 黄菊, 张顺香. 基于多层交互注意力机制的商品属性抽取*[J]. 数据分析与知识发现, 2023, 7(2): 108-118.
[12] 段宇锋, 贺国秀. 面向中文医学文本命名实体识别的神经网络模块分解分析*[J]. 数据分析与知识发现, 2023, 7(2): 26-37.
[13] 魏建香, 陆谦, 韩普, 黄卫东. 基于多语义信息融合的事件检测模型*[J]. 数据分析与知识发现, 2023, 7(12): 64-74.
[14] 沈凌云, 乐小虬. 文本神经语义解析方法研究进展[J]. 数据分析与知识发现, 2023, 7(12): 1-21.
[15] 林哲, 陈平华. 基于块注意力机制和Involution的文本情感分析模型*[J]. 数据分析与知识发现, 2023, 7(11): 37-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn