Please wait a minute...
Advanced Search
数据分析与知识发现  2024, Vol. 8 Issue (2): 99-113     https://doi.org/10.11925/infotech.2096-3467.2022.1335
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
主题-引文融合视角下重要主题发现及知识流动路径研究*
梁爽1,2,刘小平1,2(),柴文越1,2
1中国科学院文献情报中心 北京 100190
2中国科学院大学经济与管理学院信息资源管理系 北京 100190
Identifying Important Topics and Knowledge Flow Paths with Topic-Citation Fusion
Liang Shuang1,2,Liu Xiaoping1,2(),Chai Wenyue1,2
1National Science Library, Chinese Academy of Sciences, Beijing 100190, China
2Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
全文: PDF (1762 KB)   HTML ( 6
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 理解与探究知识流动的内在机理与轨迹方向,为科技创新与发展、科学评价与决策提供参考。【方法】 以主题作为研究视角,建立知识网络,综合主题影响因子与节点交叉度构建主题重要度指标。基于识别得到的重要主题,分别从知识流入与知识流出视角,利用最大路径搜索算法实现知识流动路径的构建。【结果】 实证分析表明,所构建的指标能够对领域重要主题实现有效识别。在此基础上,构造知识流动路径,并得到具有最大知识传播量的领域路径。【局限】 知识节点间的知识流动强度度量具有一定的局限性,未能全面考虑到引用行为发生的动机、引用类型等实际引用情况的多变性。【结论】 综合分析两种视角下的流动路径可以发现,主题间具有较为普遍的双向知识流动,学科内部存在交流紧密的主题群,为从整体上把握研究主题的形成脉络与继承发展提供有益参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
梁爽
刘小平
柴文越
关键词 引文分析主题引用网络主题重要性知识流动路径分析    
Abstract

[Objective] Understanding and exploring the internal mechanism and direction of knowledge flow, this paper provides references for science and technology innovation, scientific evaluation, and decision-making. [Methods] We established a topic-based knowledge network and constructed the topic importance indicators with their impact factors and node intersection degrees. We used the maximum path search algorithm based on these important topics to construct the knowledge inflow and outflow paths. [Results] The new method could effectively identify the important topics. We also identified the knowledge flow paths and the domains with the most significant knowledge dissemination. [Limitations] The measurement of knowledge flow intensity between nodes needs to consider citation motivations and types. [Conclusions] This paper identifies two-way knowledge flows between topics. Topic groups communicate closely with each other within each discipline. Knowledge flow paths provide valuable references for grasping the research topic developments as a whole.

Key wordsCitation Analysis    Topic Citation Network    Topic Importance    Knowledge Flow    Path Analysis
收稿日期: 2022-12-16      出版日期: 2023-04-28
ZTFLH:  G353  
基金资助:*中国科学院文献情报能力建设专项(E1290423)
通讯作者: 刘小平,ORCID:0000-0002-3342-8041,E-mail:liuxp@mail.las.ac.cn。   
引用本文:   
梁爽, 刘小平, 柴文越. 主题-引文融合视角下重要主题发现及知识流动路径研究*[J]. 数据分析与知识发现, 2024, 8(2): 99-113.
Liang Shuang, Liu Xiaoping, Chai Wenyue. Identifying Important Topics and Knowledge Flow Paths with Topic-Citation Fusion. Data Analysis and Knowledge Discovery, 2024, 8(2): 99-113.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022.1335      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2024/V8/I2/99
Fig.1  研究设计与方法
Fig.2  主题引用网络构建流程
Fig.3  知识流动路径构建方法(以知识流出视角为例)
Fig.4  合成生物学领域主题引用网络
主题节点 入度 出度 节点交叉度
genome engineering 53 53 53.00
assembly engineering 51 48 49.48
metabolic engineering 47 48 47.50
gene regulation 48 43 45.43
gene expression 48 43 45.43
gene circuit 49 42 45.37
mathematical simulation and
functional testing
42 36 38.89
gene mutation 43 35 38.80
DNA sequence analysis 48 30 37.97
cell engineering 41 34 37.34
Table 1  主题网络中的节点交叉度(部分)
主题 2002年 2003年 2004年 2019年 2020年 2021年
gene mutation 11/118 9/138 7/63 58/321 60/269 56/282
assembly engineering 4/5 1/3 4/28 212/1714 246/1786 240/1842
genome engineering 3/10 4/35 3/56 322/1940 380/2743 424/3280
metabolic engineering 0/0 0/0 1/0 393/2810 437/3477 453/3834
gene circuit 0/0 0/0 0/0 60/374 78/418 77/505
cell engineering 0/0 0/0 2/5 67/605 71/464 72/437
cluster 0/0 0/0 0/0 0/0 0/0 1/12
gene regulation 9/33 8/31 9/22 114/533 115/619 108/622
cancer treatment 37/252 52/215 62/328 125/745 151/1046 161/1546
biosensor 1/0 0/0 0/0 18/264 27/257 30/220
Table 2  不同年份下主题的文献数量及相应被引频次(部分)
主题 2002年 2003年 2004年 2019年 2020年 2021年 平均影响因子
gene mutation 10.73 15.33 9.00 5.53 4.48 5.04 7.52
assembly engineering 1.25 3.00 7.00 8.08 7.26 7.68 7.34
genome engineering 3.33 8.75 18.67 6.02 7.22 7.74 6.47
metabolic engineering 0 0 0 7.15 7.96 8.46 6.31
gene circuit 0 0 0 6.23 5.36 6.56 6.24
cell engineering 0 0 2.50 9.03 6.54 6.07 6.06
cluster 0 0 0 0 0 12.00 6.05
gene regulation 3.67 3.88 2.44 4.68 5.38 5.76 5.98
cancer treatment 6.81 4.13 5.29 5.96 6.93 9.60 5.92
biosensor 0 0 0 14.67 9.52 7.33 5.64
Table 3  不同年份下主题的影响因子及平均值(部分)
主题节点 交叉度 k 平均影响因子 T I F ˉ 重要度值 I
assembly engineering 49.48 7.34 363.18
genome engineering 53.00 6.47 342.91
metabolic engineering 47.50 6.31 299.73
gene mutation 38.80 7.52 291.78
gene circuit 45.37 6.24 283.11
gene regulation 45.43 5.98 271.67
cell engineering 37.34 6.06 226.28
cancer treatment 36.47 5.92 215.90
DNA sequence analysis 37.97 4.88 185.29
biosensor 28.50 5.64 160.74
Table 4  主题节点的重要度值(部分)
Fig.5  网络效率下降比例及极大连通系数关于节点移除数量的变化情况
知识流入视角(作为施引主题) 知识流出视角(作为被引主题)
被引主题 引用次数 流入比例 施引主题 引用次数 流出比例
cell engineering 7 0.03 cell engineering 3 0.01
molecular biology 2 0.01 molecular biology 3 0.01
assembly engineering 40 0.17 assembly engineering 40 0.20
gene circuit 28 0.12 gene circuit 25 0.12
biosensor 2 0.01 biosensor 2 0.01
metabolic engineering 14 0.06 metabolic engineering 15 0.07
cancer treatment 2 0.01 cancer treatment 2 0.01
DNA sequence analysis 10 0.04 DNA sequence analysis 10 0.05
mathematical simulation and functional testing 14 0.06 mathematical simulation and functional testing 15 0.07
gene mutation 10 0.04 gene mutation 2 0.01
network biology 5 0.02 enzyme catalysis 4 0.02
gene regulation 52 0.23 gene regulation 18 0.09
gene expression 9 0.04 gene expression 7 0.03
genome engineering 31 0.14 genome engineering 49 0.24
Table 5  知识流入及知识流出视角下主题间的知识流动比例
Fig.6  知识流入视角下的路径构建
Fig.7  知识流出视角下的路径构建
[1] Spender J C. Making Knowledge the Basis of a Dynamic Theory of the Firm[J]. Strategic Management Journal, 1996, 17(S2): 45-62.
doi: 10.1002/smj.v17.2s
[2] Drucker P F. Managing in a Time of Great Change[M]. Oxford: Butterworth Heinemann, 1995.
[3] Nissen M E. Initiating a System for Visualizing and Measuring Dynamic Knowledge[J]. Technological Forecasting and Social Change, 2019, 140: 169-181.
doi: 10.1016/j.techfore.2018.04.008
[4] Hagel III J, Brown J S, Davison L. Measuring the Forces of Long-Term Change: The 2009 Shift Index[EB/OL]. [2022-07-22]. https://www.johnseelybrown.com/shiftindex.pdf.
[5] 赵迪. 创新思维: 科学知识增长的灵魂[D]. 长春: 吉林大学, 2018.
[5] (Zhao Di. Innovative Thinking: The Soul of Scientific Knowledge Increasing[D]. Changchun: Jilin University, 2018.)
[6] Zhuge H. Discovery of Knowledge Flow in Science[J]. Communications of the ACM, 2006, 49(5): 101-107.
[7] Garfield E, Sher I H, Torpie R J. The Use of Citation Data in Writing the History of Science[R]. Philadelphia: Institute for Scientific Information, 1964.
[8] Hummon N P, Dereian P. Connectivity in a Citation Network: The Development of DNA Theory[J]. Social Networks, 1989, 11(1): 39-63.
doi: 10.1016/0378-8733(89)90017-8
[9] 刘懿, 周丽英. 主路径分析方法研究进展[J]. 数字图书馆论坛, 2019(10): 8-15.
[9] (Liu Yi, Zhou Liying. Literature Review about Main Path Analysis Method[J]. Digital Library Forum, 2019(10): 8-15.)
[10] Lucio-Arias D, Leydesdorff L. Main-Path Analysis and Path-Dependent Transitions in HistCiteTM-Based Historiograms[J]. Journal of the American Society for Information Science and Technology, 2008, 59(12): 1948-1962.
doi: 10.1002/asi.v59:12
[11] 马瑞敏, 张欣. 基于Pathfinder算法的领域知识交流主路径发现研究[J]. 情报学报, 2016, 35(8): 856-863.
[11] (Ma Ruimin, Zhang Xin. Discovering the Knowledge Communication Main Path of a Domain Based on Pathfinder Algorithm[J]. Journal of the China Society for Scientific and Technical Information, 2016, 35(8): 856-863.)
[12] 马瑞敏, 杨雨华. 基于节点重要性的领域主路径发现新探索[J]. 情报杂志, 2018, 37(3): 71-78, 93.
[12] (Ma Ruimin, Yang Yuhua. Discovering Main Path of a Domain Based on Node Importance[J]. Journal of Intelligence, 2018, 37(3): 71-78, 93.)
[13] 文庭孝, 汪全莉, 王丙炎, 等. 知识网络及其测度研究[J]. 图书馆, 2009(1): 1-6.
[13] (Wen Tingxiao, Wang Quanli, Wang Bingyan, et al. Research of Knowledge Network and Mearurement[J]. Library, 2009(1): 1-6.)
[14] 刘向, 马费成, 王晓光. 知识网络的结构及过程模型[J]. 系统工程理论与实践, 2013, 33(7): 1836-1844.
doi: 10.12011/1000-6788(2013)7-1836
[14] (Liu Xiang, Ma Feicheng, Wang Xiaoguang. Formation and Process Model of Knowledge Networks[J]. Systems Engineering-Theory & Practice, 2013, 33(7): 1836-1844.)
doi: 10.12011/1000-6788(2013)7-1836
[15] 何劲, 关鹏, 王曰芬. 作者-主题关联的学科知识网络构建与演化分析[J]. 情报科学, 2019, 37(1): 56-62, 67.
[15] (He Jin, Guan Peng, Wang Yuefen. Construction and Evolution Analysis of Discipline Knowledge Network Based on Author-Topic Association[J]. Information Science, 2019, 37(1): 56-62, 67.)
[16] 王菲菲, 王筱涵, 徐硕, 等. 基于三维引文关联网络的潜在知识流动探测——以基因编辑领域为例[J]. 情报学报, 2021, 40(2): 184-193.
[16] (Wang Feifei, Wang Xiaohan, Xu Shuo, et al. Potential Knowledge Flow Detection from an Integrated Perspective of Three-Dimensional Citations: A Case Study of Gene Editing[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(2): 184-193.)
[17] 商宪丽. 基于主题引用网络的交叉学科知识传播研究——以数字图书馆为例[J]. 情报科学, 2018, 36(8): 53-59, 66.
[17] (Shang Xianli. Research on Knowledge Dissemination in Cross-Disciplines Based on Topic Citation Network——An Example of Digital Library[J]. Information Science, 2018, 36(8): 53-59, 66.)
[18] Yan E J. Finding Knowledge Paths Among Scientific Disciplines[J]. Journal of the Association for Information Science and Technology, 2014, 65(11): 2331-2347.
doi: 10.1002/asi.2014.65.issue-11
[19] 关鹏. 整合主题的学科知识网络建模与演化机理研究[D]. 南京: 南京理工大学, 2018.
[19] (Guan Peng. Research on Modeling and Evolution Mechanism of Discipline Knowledge Network Based on Integrating Topic[D]. Nanjing: Nanjing University of Science and Technology, 2018.)
[20] 董坤, 许海云, 崔斌. 知识流动研究述评[J]. 情报学报, 2020, 39(10): 1120-1132.
[20] (Dong Kun, Xu Haiyun, Cui Bin. A Review of Knowledge Flow Research[J]. Journal of the China Society for Scientific and Technical Information, 2020, 39(10): 1120-1132.)
[21] 王曰芬, 王金树, 关鹏. 主题-主题关联的学科知识网络构建与演化分析[J]. 情报科学, 2018, 36(9): 9-15, 102.
[21] (Wang Yuefen, Wang Jinshu, Guan Peng. Research on Construction and Evolution Analysis of Discipline Knowledge Network Based on Topics Association[J]. Information Science, 2018, 36(9): 9-15, 102.)
[22] Zhang G J, Liu L N, Wei F F. Key Nodes Mining in the Inventor-Author Knowledge Diffusion Network[J]. Scientometrics, 2019, 118(3): 721-735.
doi: 10.1007/s11192-019-03005-2
[23] Zhao S X, Ye F Y. Exploring the Directed h-Degree in Directed Weighted Networks[J]. Journal of Informetrics, 2012, 6(4): 619-630.
doi: 10.1016/j.joi.2012.06.007
[24] 刘臣, 张庆普, 单伟, 等. 学科知识流动网络的构建与分析[J]. 情报学报, 2009, 28(2): 257-265.
[24] (Liu Chen, Zhang Qingpu, Shan Wei, et al. Construction and Analysis of Disciplinary Knowledge Flow Network[J]. Journal of the China Society for Scientific and Technical Information, 2009, 28(2): 257-265.)
[25] 毕崇武, 叶光辉, 彭泽, 等. 引文内容视角下的引文网络知识流动效应研究[J]. 情报科学, 2022, 40(2): 49-58.
[25] (Bi Chongwu, Ye Guanghui, Peng Ze, et al. Network Analysis on Knowledge Flow in Citation Network from the Perspective of Citation Content[J]. Information Science, 2022, 40(2): 49-58.)
[26] Sugiyama K, Kumar T, Kan M Y, et al. Identifying Citing Sentences in Research Papers Using Supervised Learning[C]// Proceedings of the 2010 International Conference on Information Retrieval & Knowledge Management. Piscataway: IEEE, 2010: 67-72.
[27] 夏红玉, 胡潜, 王忠义. 基于引文重要性的知识流动主路径分析[J]. 情报学报, 2022, 41(5): 451-462.
[27] (Xia Hongyu, Hu Qian, Wang Zhongyi. Tracing the Knowledge Flow Main Path Based on Important Citations[J]. Journal of the China Society for Scientific and Technical Information, 2022, 41(5): 451-462.)
[28] Kim M, Baek I, Song M. Topic Diffusion Analysis of a Weighted Citation Network in Biomedical Literature[J]. Journal of the Association for Information Science and Technology, 2018, 69(2): 329-342.
doi: 10.1002/asi.2018.69.issue-2
[29] Ma R M, Yan E J. Uncovering Inter-Specialty Knowledge Communication Using Author Citation Networks[J]. Scientometrics, 2016, 109(2): 839-854.
doi: 10.1007/s11192-016-2091-2
[30] Yan E J. Research Dynamics, Impact, and Dissemination: A Topic-Level Analysis[J]. Journal of the Association for Information Science and Technology, 2015, 66(11): 2357-2372.
doi: 10.1002/asi.2015.66.issue-11
[31] 周立欣, 刘臣, 霍良安, 等. 基于交叉度的有向网络中心节点识别算法研究[J]. 计算机应用研究, 2016, 33(11): 3299-3302, 3306.
[31] (Zhou Lixin, Liu Chen, Huo Liang'an, et al. Identification Algorithms of Center Node in Directed Complex Networks Based on Cross Degree[J]. Application Research of Computers, 2016, 33(11): 3299-3302, 3306.)
[32] Mann G S, Mimno D, McCallum A. Bibliometric Impact Measures Leveraging Topic Analysis[C]// Proceedings of the 6th ACM/IEEE-CS Joint Conference on Digital Libraries. New York: ACM, 2006: 65-74.
[33] 蒋林承. 复杂网络节点和边重要性度量以及多源信息传播问题研究[D]. 长沙: 国防科技大学, 2018.
[33] (Jiang Lincheng. Research on Identifying Node and Edge Importance and Influence Maximization in Complex Networks[D]. Changsha: National University of Defense Technology, 2018.)
[34] 王盼娣, 熊小娟, 付萍, 等. 《生物安全法》实施背景下对合成生物学的监管[J]. 华中农业大学学报, 2021, 40(6): 231-245.
[34] (Wang Pandi, Xiong Xiaojuan, Fu Ping, et al. Regulation of Synthetic Biology under Background of Implementing Biosafety Law[J]. Journal of Huazhong Agricultural University, 2021, 40(6): 231-245.)
[35] 张先恩. 中国合成生物学发展回顾与展望[J]. 中国科学(生命科学), 2019, 49(12): 1543-1572.
[35] Zhang Xian'en. Synthetic Biology in China: Review and Prospects[J]. Scientia Sinica (Vitae), 2019, 49(12): 1543-1572.)
[36] 阿茹娜, 郑婉颖, 俞如旺. 合成生物学及其应用研究概述[J]. 生物学教学, 2019, 44(10): 5-8.
[36] (E Ru'na, Zheng Wanying, Yu Ruwang. A Brief Review on Synthetic Biology and Its Application[J]. Biology Teaching, 2019, 44(10): 5-8.)
[37] Shapira P, Kwon S, Youtie J. Tracking the Emergence of Synthetic Biology[J]. Scientometrics, 2017, 112(3): 1439-1469.
doi: 10.1007/s11192-017-2452-5 pmid: 28804177
[1] 李佳蕾, 安培浚, 肖仙桃. 学科交叉主题识别方法研究综述*[J]. 数据分析与知识发现, 2023, 7(4): 1-15.
[2] 吴江, 贺超城, 马磐昊. 基于迭代超中心度的MOOC论坛用户知识互动超网络研究*[J]. 数据分析与知识发现, 2017, 1(8): 1-8.
[3] 卢超, 章成志. 基于引文内容的单篇学术论文参考文献网络结构研究[J]. 现代图书情报技术, 2014, 30(10): 33-41.
[4] 张素芳,宋虎. 论文引文检索与分析自动化系统的构建[J]. 现代图书情报技术, 2014, 30(1): 92-96.
[5] 陈亮, 张志强, 尚玮姣. 专利引文分析方法研究进展[J]. 现代图书情报技术, 2013, 29(7/8): 75-81.
[6] 陈仕吉, 史丽文, 李冬梅, 左文革. 论文被引频次标准化方法述评[J]. 现代图书情报技术, 2012, 28(4): 54-60.
[7] 范云满, 马建霞. 利用LDA的领域新兴主题探测技术综述[J]. 现代图书情报技术, 2012, (12): 58-65.
[8] 胡志刚, 陈超美, 刘则渊, 侯海燕. 基于XML全文数据引文分析系统的设计与实现[J]. 现代图书情报技术, 2012, (11): 72-77.
[9] 陈仕吉. 科学研究前沿探测方法综述[J]. 现代图书情报技术, 2009, (9): 28-33.
[10] 陈亦佳,赵星. 基于期刊引文网络视角研究国际图书馆学情报学知识交流[J]. 现代图书情报技术, 2009, 25(6): 55-60.
[11] 孙涛涛,Steven A.Morris,黄亚明. 基于专利引文分析的时间线技术[J]. 现代图书情报技术, 2008, 24(6): 51-55.
[12] 刘佳佳,董茗,方曙 . 国外专利分析工具的比较研究[J]. 现代图书情报技术, 2007, 2(2): 67-74.
[13] 陈祖琴,郑宏 . 基于元搜索引擎的中文数据库引文分析系统[J]. 现代图书情报技术, 2006, 1(11): 65-68.
[14] 王知津,孙美丽. 1998-2000年《现代图书情报技术》引文及影响因子分析[J]. 现代图书情报技术, 2003, 19(3): 8-11.
[15] 程刚. 《现代图书情报技术》被引分析[J]. 现代图书情报技术, 2001, 17(1): 33-36.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn