Please wait a minute...
Advanced Search
数据分析与知识发现  2024, Vol. 8 Issue (5): 18-28     https://doi.org/10.11925/infotech.2096-3467.2023.0431
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于篇章级语义图的对话一致性检测*
李霏(),邓凯方,范茂慧,滕冲,姬东鸿
武汉大学国家网络安全学院 空天信息安全与可信计算教育部重点实验室 武汉 430072
Examining Dialogue Consistency Based on Chapter-Level Semantic Graph
Li Fei(),Deng Kaifang,Fan Maohui,Teng Chong,Ji Donghong
Key Laboratory of Aerospace Information Security and Trusted Computing, Ministry of Education, School of Cyber Science and Engineering, Wuhan University, Wuhan 430072, China
全文: PDF (1486 KB)   HTML ( 15
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 通过融合包含共指链以及抽象语义表示等语义信息的对话篇章级语义图,提高对话一致性检测的准确性。【方法】 首先,利用预训练语言模型BERT编码对话上下文和知识库;其次,构建包含共指链和抽象语义表示等语义信息的对话篇章级语义图,利用多关系图卷积神经网络捕获语义图中的语义信息;最后,构建多个分类器预测多种对话不一致现象。【结果】 基于CI-ToD基准数据集,与现有对话不一致检测模型进行实验对比,本文模型在F1值或准确率指标上较之前的最优模型取得0.01以上的提升。【局限】 所提模型不能很好地处理对话中存在的共指实体省略问题。【结论】 融合共指链以及抽象语义表示等多种类别的语义信息能够有效提升对话一致性检测的效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李霏
邓凯方
范茂慧
滕冲
姬东鸿
关键词 对话系统一致性检测共指链抽象语义表示图卷积神经网络    
Abstract

[Objective] This paper integrates chapter-level semantic graphs to improve the accuracy of dialogue consistency detection. [Methods] First, we used the pre-trained language model BERT to encode the dialogue context and knowledge base. Then, we constructed a dialogue chapter-level semantic graph containing coreference chains and abstract meaning representations. Third, we captured the semantic information of the constructed graph using a multi-relation graph convolutional network. Finally, we built multiple classifiers to predict dialogue inconsistency. [Results] We examined our new model on the CI-ToD benchmark dataset and compared its performance with the existing models. The proposed model’s F1 value improved by more than 1% over the optimal models. [Limitations] The proposed model cannot address the co-referential entity omission in dialogues. [Conclusions] Integrating various types of semantic information, such as coreference chains and abstract meaning representations, can effectively improve the performance of dialogue consistency detection.

Key wordsDialogue System    Consistency Detection    Coreference Chain    Abstract Meaning Representation    Graph Convolutional Network
收稿日期: 2023-05-08      出版日期: 2024-03-01
ZTFLH:  TP391  
基金资助:*教育部人文社会科学研究青年基金项目的研究成果之一(21YJCZH064)
通讯作者: 李霏,ORCID:0000-0003-1816-1761,E-mail:lifei_csnlp@whu.edu.cn。   
引用本文:   
李霏, 邓凯方, 范茂慧, 滕冲, 姬东鸿. 基于篇章级语义图的对话一致性检测*[J]. 数据分析与知识发现, 2024, 8(5): 18-28.
Li Fei, Deng Kaifang, Fan Maohui, Teng Chong, Ji Donghong. Examining Dialogue Consistency Based on Chapter-Level Semantic Graph. Data Analysis and Knowledge Discovery, 2024, 8(5): 18-28.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2023.0431      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2024/V8/I5/18
Fig.1  语义图构建流程图
Fig.2  模型整体框架
Fig.3  ChatGPT提示
种类 模型 QI-F1 HI-F1 KBI-F1 Overall Acc
不使用预训练语言模型的方法 ESIM 0.512 0.164 0.543 0.432
InferSent 0.557 0.031 0.336 0.356
RE2 0.655 0.244 0.739 0.481
基于预训练语言模型的方法 BERT 0.691 0.555 0.740 0.500
RoBERTa 0.715 0.472 0.715 0.500
XLNET 0.725 0.487 0.736 0.509
Longformer 0.717 0.500 0.710 0.497
BART 0.744 0.510 0.761 0.513
CGIM 0.764 0.567 0.772 0.563
ChatGPT 0.810 0.625 0.802 0.580
本文 SGDCI 0.791 0.635 0.783 0.601
Table 1  主要实验结果
方法 QI HI KBI Overall Acc
P R F1 P R F1 P R F1
SGDCI 0.765 0.818 0.791 0.645 0.625 0.635 0.716 0.863 0.783 0.601
-coref 0.777 0.755 0.766 0.600 0.578 0.587 0.731 0.727 0.729 0.544
-amr 0.764 0.790 0.777 0.557 0.531 0.544 0.710 0.851 0.774 0.557
-utt 0.824 0.720 0.769 0.653 0.500 0.566 0.722 0.727 0.724 0.566
Table 2  消融实验
Fig.4  图卷积网络层数影响
Fig.5  少样本测试性能
Fig.6  案例分析
[1] Eric M, Krishnan L, Charette F, et al. Key-Value Retrieval Networks for Task-Oriented Dialogue[C]// Proceedings of the 18th Annual SIGdial Meeting on Discourse and Dialogue. 2017: 37-49.
[2] Qin L B, Che W X, Li Y M, et al. DCR-Net: A Deep Co-interactive Relation Network for Joint Dialog Act Recognition and Sentiment Classification[C]// Proceedings of the 34th AAAI Conference on Artificial Intelligence. 2020: 8665-8672.
[3] Qin L B, Liu Y J, Che W X, et al. Entity-Consistent End-to-End Task-Oriented Dialogue System with KB Retriever[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. 2019: 133-142.
[4] Wu C S, Madotto A, Hosseini-Asl E, et al. Transferable Multi-Domain State Generator for Task-Oriented Dialogue Systems[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019: 808-819.
[5] Takanobu R, Liang R Z, Huang M L. Multi-Agent Task-Oriented Dialog Policy Learning with Role-Aware Reward Decomposition[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020: 625-638.
[6] Zhang S Z, Dinan E, Urbanek J, et al. Personalizing Dialogue Agents: I Have a Dog, Do You Have Pets Too?[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers). 2018: 2204-2213.
[7] Qin L B, Xu X, Che W X, et al. Dynamic Fusion Network for Multi-Domain End-to-End Task-Oriented Dialog[C] // Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020: 6344-6354.
[8] Li Y M, Yao K S, Qin L B, et al. Slot-Consistent NLG for Task-Oriented Dialogue Systems with Iterative Rectification Network[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020: 97-106.
[9] Wu C S, Hoi S C H, Socher R, et al. TOD-BERT: Pre-trained Natural Language Understanding for Task-Oriented Dialogue[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020: 917-929.
[10] Wang J, Liu J H, Bi W, et al. Dual Dynamic Memory Network for End-to-End Multi-Turn Task-Oriented Dialog Systems[C]// Proceedings of the 28th International Conference on Computational Linguistics. 2020: 4100-4110.
[11] Zheng Y H, Chen G Y, Huang M L, et al. Personalized Dialogue Generation with Diversified Traits[OL]. arXiv Preprint, arXiv: 1901.09672.
[12] Welleck S, Weston J, Szlam A, et al. Dialogue Natural Language Inference[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2020: 3731-3741.
[13] Song H Y, Wang Y, Zhang W N, et al. Profile Consistency Identification for Open-Domain Dialogue Agents[C]// Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP). 2020: 6651-6662.
[14] Nie Y X, Williamson M, Bansal M, et al. I Like Fish, Especially Dolphins: Addressing Contradictions in Dialogue Modeling[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:Long Papers). 2021: 1699-1713.
[15] Qin L B, Xie T B, Huang S J, et al. Don’t be Contradicted with Anything! CI-ToD: Towards Benchmarking Consistency for Task-Oriented Dialogue System[C]// Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing. 2021: 2357-2367.
[16] Lee K, He L H, Lewis M, et al. End-to-End Neural Coreference Resolution[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017: 188-197.
[17] Bai X F, Chen Y L, Song L F, et al. Semantic Representation for Dialogue Modeling[C]// Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1:Long Papers). 2021: 4430-4445.
[18] Qin L B, Chen Q G, Xie T B, et al. CGIM: A Cycle Guided Interactive Learning Model for Consistency Identification in Task-Oriented Dialogue[C]// Proceedings of the 29th International Conference on Computational Linguistics. 2022: 461-470.
[19] Madotto A, Wu C S, Fung P. Mem2Seq: Effectively Incorporating Knowledge Bases into End-to-End Task-Oriented Dialog Systems[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers). 2018: 1468-1478.
[20] OpenAI. ChatGPT: Optimizing Language Models for Dialogue[EB/OL]. [2023-05-08]. https://openai.com/blog/chatgpt/.
[21] Wu X H, Wang T R, Fan Y P, et al. Chinese Event Extraction via Graph Attention Network[J]. ACM Transactions on Asian and Low-Resource Language Information Processing, 2022, 21(4): 71.
[22] Liu X, Luo Z C, Huang H Y. Jointly Multiple Events Extraction via Attention-Based Graph Information Aggregation[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 1247-1256.
[23] Kipf T N, Welling M. Semi-Supervised Classification with Graph Convolutional Networks[OL]. arXiv Preprint, arXiv: 1609.02907.
[24] Chen Q, Zhu X D, Ling Z H, et al. Enhanced LSTM for Natural Language Inference[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers). 2017: 1657-1668.
[25] Conneau A, Kiela D, Schwenk H, et al. Supervised Learning of Universal Sentence Representations from Natural Language Inference Data[C]// Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. 2017: 670-680.
[26] Yang R Q, Zhang J H, Gao X, et al. Simple and Effective Text Matching with Richer Alignment Features[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019: 4699-4709.
[27] Devlin J, Chang M W, Lee K, et al. BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 1 (Long and Short Papers). 2019: 4171-4186.
[28] Liu Y H, Ott M, Goyal N, et al. RoBERTa: A Robustly Optimized BERT Pretraining Approach[OL]. arXiv Preprint, arXiv:1907.11692.
[29] Yang Z L, Dai Z H, Yang Y M, et al. XLNet: Generalized Autoregressive Pretraining for Language Understanding[C]// Proceedings of the 33rd International Conference on Neural Information Processing Systems. 2019: 5753-5763.
[30] Beltagy I, Peters M E, Cohan A. Longformer: The Long-Document Transformer[OL]. arXiv Preprint, arXiv: 2004.05150.
[31] Lewis M, Liu Y H, Goyal N, et al. BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension[C]// Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. 2020: 7871-7880.
[1] 张岚泽, 赵晓亮, 刘津彤, 顾益军. 基于空间-邻域自适应的图卷积神经网络信贷欺诈检测模型*[J]. 数据分析与知识发现, 2024, 8(4): 137-151.
[2] 吴越, 孙海春. 基于图神经网络的知识图谱补全研究综述*[J]. 数据分析与知识发现, 2024, 8(3): 10-28.
[3] 李雪莲, 王碧, 李立鑫, 韩迪轩. 融合抽象语义表示和依存语法的方面级情感分析*[J]. 数据分析与知识发现, 2024, 8(1): 55-68.
[4] 向卓元, 陈浩, 王倩, 李娜. 面向任务型对话的小样本语言理解模型研究*[J]. 数据分析与知识发现, 2023, 7(9): 64-77.
[5] 魏建香, 陆谦, 韩普, 黄卫东. 基于多语义信息融合的事件检测模型*[J]. 数据分析与知识发现, 2023, 7(12): 64-74.
[6] 余本功, 季晓晗. 基于ADGCN-MFM的多模态讽刺检测研究*[J]. 数据分析与知识发现, 2023, 7(10): 85-94.
[7] 郭樊容, 黄孝喜, 王荣波, 谌志群, 胡创, 谢一敏, 司博宇. 基于Transformer和图卷积神经网络的隐喻识别*[J]. 数据分析与知识发现, 2022, 6(4): 120-129.
[8] 范涛,王昊,吴鹏. 基于图卷积神经网络和依存句法分析的网民负面情感分析研究*[J]. 数据分析与知识发现, 2021, 5(9): 97-106.
[9] 曾新红,林伟明,明仲. 中文叙词表本体一致性检测机制研究与实现*[J]. 现代图书情报技术, 2008, 24(5): 1-9.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn