Please wait a minute...
Advanced Search
数据分析与知识发现  2021, Vol. 5 Issue (12): 1-13     https://doi.org/10.11925/infotech.2096-3467.2021.0516
  综述评介 本期目录 | 过刊浏览 | 高级检索 |
基于知识图谱的推荐系统研究综述*
朱冬亮,文奕(),万子琛
中国科学院成都文献情报中心 成都 610041
中国科学院大学经济管理学院图书情报与档案管理系 北京 100190
Review of Recommendation Systems Based on Knowledge Graph
Zhu Dongliang,Wen Yi(),Wan Zichen
Chengdu Library and Information Center, Chinese Academy of Sciences, Chengdu 610041,China
Department of Library, Information and Archives Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190,China
全文: PDF (1013 KB)   HTML ( 67
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 对基于知识图谱的推荐系统相关成果进行归纳梳理和展望总结。【文献范围】 以“knowledge graph”、“KG”、“recommendation system”、“RS”、“recommended system”、“知识图谱”、“推荐系统”等关键词在Web of Science、中国知网、万方等文献数据库中进行检索,经过文献筛选,对其中的70篇文献进行研究总结。【方法】 归纳总结基于知识图谱的推荐算法分类,对不同算法分类下的推荐系统发展历程进行梳理,介绍典型算法并对未来发展前景进行展望。【结果】 基于知识图谱的推荐系统按照算法思想差异可以分为基于连接的推荐、基于嵌入的推荐和基于混合的推荐。三种算法思想在不同的使用场景各有优缺点,如何充分利用图谱信息的同时减少算力消耗,未来值得关注。【局限】 由于渠道限制,未能得到基于知识图谱的推荐系统一定数量的商业落地实例进行剖析对比。【结论】 基于知识图谱的推荐系统有效改善了传统推荐算法的效果,结合机器学习思想的推荐算法值得进一步探索,如何在有效范围内降低模型消耗也需要考虑。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱冬亮
文奕
万子琛
关键词 知识图谱推荐系统数据挖掘    
Abstract

[Objective] This paper reviewed the latest achievements of recommendation systems based on the knowledge graph. [Coverage] We used “knowledge graph”, “KG”, “recommendation system”, “RS”, and “recommended system” as key words to search the Web of Science, CNKI, Wanfang and other scholarly databases. A total of 70 documents were reviewed. [Methods] First, we summarized the classification of recommendation algorithms based on knowledge graphs. Then, we sorted the development history of recommendation systems using different types of algorithms. Finally, we discussed the typical algorithms and their future development trends. [Results] The reviewed recommendation systems were based on connection, embedding and hybrid methods. The three types of algorithms have advantages and disadvantages in different scenarios. Maximizing the utilization of graph information and reducing the computing power consumption is the future direction. [Limitations] We did not include the commercial examples of the recommendation systems. [Conclusions] The knowledge graph and machine learning could effectively improve the traditional recommendation algorithms.

Key wordsKnowledge Graph    Recommendation System    Data Mining
收稿日期: 2021-05-24      出版日期: 2022-01-20
ZTFLH:  TP393  
基金资助:* 中国科学院文献情报能力建设专项(Y9290002-3.5.3)
通讯作者: 文奕,ORCID:0000-0002-6520-2733     E-mail: weny@clas.ac.cn
引用本文:   
朱冬亮, 文奕, 万子琛. 基于知识图谱的推荐系统研究综述*[J]. 数据分析与知识发现, 2021, 5(12): 1-13.
Zhu Dongliang, Wen Yi, Wan Zichen. Review of Recommendation Systems Based on Knowledge Graph. Data Analysis and Knowledge Discovery, 2021, 5(12): 1-13.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2021.0516      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2021/V5/I12/1
应用领域 应用实例
娱乐活动 音乐 网易云、QQ音乐、酷狗音乐
美食 美团、大众点评、口碑
新闻 今日头条、网易新闻、腾讯新闻、搜狐新闻
视频 Netflix、抖音、快手、腾讯视频、爱奇艺、优酷
旅行 携程、爱彼迎、去哪儿网
日常生活 购物 淘宝、天猫、拼多多、京东
阅读 亚马逊、当当、书旗小说、番茄小说
社交 Facebook、推特、新浪微博
求职 智联招聘、BOSS直聘、实习僧
就医 丁香医生、医学界
生产实践 农业 一亩田、惠农网、我会种
工业 阿里云工业大脑、智慧城市、智慧电网
服务业 安居客、瓜子、世纪佳缘
Table 1  推荐系统应用部分实例
Fig.1  基于知识图谱的推荐示例
推荐模型 发表年份 核心算法/思想 数据集 基线模型 评价指标
基于连接的推荐 HeteroMF[30] 2013 集体矩阵分解(CMF) Epinions
Flixster
CMF
SMF
RMSE
Hete-MF[31] 2013 矩阵分解(MF) IMDb-MovieLens-100K NMF
WNMF
MAE
RMSE
HeteRec-p[32] 2014 贝叶斯排序(BPR)
元路径传播
IMDb-MovieLens-100K
Yelp
NMF
Hybrid-SVM
Prec@k
MRR
Hete-CF[33] 2014 协同过滤(CF) DBLP
Meetup
UserMean
ItemMean
NMF
MAE
RMSE
SemRec[34] 2015 加权元路径相似性度量 豆瓣
Yelp
PMF
SMF
CMF
MAE
RMSE
GraphLF[35] 2016 概率逻辑系统(ProPPR) MovieLens-100K
Yelp
HeteRec-p
NB
MRR
Precision
FMG[36] 2017 矩阵分解(MF)
主成分分析(PCA)
线性判别分析(LDA)
Amazon
Yelp
RegSVD
HeteRec
SemRec
RMSE
基于嵌入的推荐 Node2Vec[37] 2016 随机梯度下降(SGD)
Skip-gram
离散傅立叶变换(DFT)
广度优先抽样(BFS)
Les-Misérables-network Spectral clustering
DeepWalk
LINE
Micro-F1
Macro-F1
Entity2Rec[38] 2017 Node2Vec
LambdaMart
Adarank
MovieLens-1M NMF
SVD
ItemKNN
Prec@k
MAP
DKN[39] 2018 卷积神经网络(CNN)
深度神经网络(DNN)
注意力机制
Bing News LibFM
DeepWide
DMF
F1
AUC
RKGE[40] 2018 循环神经网络(RNN) MovieLens-1M
Yelp
HeteRS
HeteRec
GraphLF
Prec@k
MRR
MKR[41] 2019 多层感知器(MLP)
多任务学习(MTL)
MovieLens-1M
Book-Crossing
Last.FM
Bing-News
DKN
RippleNet
LibFM
Wide&Deep
AUC
ACC
Precision
Recall
SI-MKR[42] 2020 多层感知器(MLP)
卷积神经网络(CNN)
MovieLens-1M DKN
Wide&Deep
MKR
Precision
Recall
基于混合的推荐 RippleNet[43] 2018 偏好传播 MovieLens-1M
Book-Crossing
Bing-News
CKE
SHINE
DKN
LibFM
Wide&Deep
Precision
Recall
F1
AUC
ACC
KGCN[44] 2019 图卷积神经网络(GCN)
注意力机制
MovieLens-20M
Book-Crossing
Last.FM
LibFM
LibFM + TransE
RippleNet
AUC
F1
Recall
KGAT[45] 2019 图卷积神经网络(GCN)
TransR
注意力机制
Amazon-book
Last-FM
Yelp2018
NFM
CKE
MCRec
RippleNet
Recall
NDCG
RecKGC[46] 2019 知识图谱补全(KGC)
注意力机制
MovieLens
Amazon Music
CDL
NeuMF
DistMult
HR@k
NDCG
Hits@10
MRR
GraphRec[47] 2019 图神经网络(GNNs)
多层感知器(MLP)
Ciao
Epinions
SoRec
NeuMF
GCMC+SN
MAE
RMSE
NIA-GCN[48] 2020 逐层邻居聚合(PNA)
并行图卷积网络(Parallel-GCNs)
跨深度集成(CDE)
Gowalla
Amazon-Electronics
Amazon-CDs
Amazon-Movies
NeuMF
GC-MC
PinSAGE-LSTM
NGCF
Recall
NDCG
Logloss
AUC
MBGCN[49] 2020 图卷积神经网络(GCN) Tmall
Beibei
NeuMF
GraphSAGE-OB
RGCN
Recall
NDCG
NeuACF[50] 2021 深度神经网络(DNN)
自注意力机制
MovieLens
Amazon-Electronics
DMF
HeteRS
FMG
HR@k
NDCG@k
Table 2  基于知识图谱的推荐模型对比
Fig.2  基于知识图谱嵌入的推荐系统分类
推荐框架 典型模型 优点 缺点
基于连接的推荐 HeteroMF、
Hete-MF、
Hete-CF等
充分利用知识图谱的连接关系,实现基于连接的预测与推荐 需手动设计元路径,跨领域推荐能力缺失,实际场景应用范围有限
基于嵌入的推荐 Node2Vec、
entity2rec、
DKN、
RKGE等
引入向量表示,降低知识图谱的高维性和异构性,减轻特征工程工作,提高知识图谱应用灵活度 忽略了知识图谱中的信息连通性,无法利用实体间多跳关系,无法挖掘图谱中高阶关系,部分推荐结果缺乏可解释性
基于混合的推荐 RippleNet、
KGCN、
KGAT 等
引入向量表示的同时充分利用实体连接关系,挖掘高阶语义,实现精准推荐 复杂模型带来较多资源消耗、多参数调优等难题,在大规模业务数据情况下的扩展性能有限
Table 3  基于知识图谱的推荐思想对比
[1] Toffler A. Future Shock[M]. New York: Bantam Books, 1971.
[2] Resnick P, Varian H R. Recommender Systems[J]. Communications of the ACM, 1997, 40(3): 56-58.
[3] Hansen C, Hansen C, Maystre L, et al. Contextual and Sequential User Embeddings for Large-Scale Music Recommendation [C]//Proceedings of the 14th ACM Conference on Recommender Systems. NewYork, USA: ACM, 2020: 53-62.
[4] Schmeier T, Chisari J, Garrett S, et al. Music Recommendations in Hyperbolic Space: An Application of Empirical Bayes and Hierarchical Poincaré Embeddings [C]//Proceedings of the 13th ACM Conference on Recommender Systems. 2019: 437-441.
[5] Liu D Y, Lian J X, Wang S Y, et al. KRED: Knowledge-Aware Document Representation for News Recommendations [C]//Proceedings of the 14th ACM Conference on Recommender Systems. 2020: 200-209.
[6] Sheu H S, Li S. Context-Aware Graph Embedding for Session-Based News Recommendation [C]//Proceedings of the 14th ACM Conference on Recommender Systems. 2020: 657-662.
[7] Liu P, Shivaram K, Culotta A, et al. The Interaction between Political Typology and Filter Bubbles in News Recommendation Algorithms [C]//Proceedings of the Web Conference 2021. 2021: 3791-3801.
[8] Ferreira F, Souza D R, Moura I, et al. Investigating Multimodal Features for Video Recommendations at Globoplay [C]//Proceedings of the 14th ACM Conference on Recommender Systems. 2020: 571-572.
[9] Symeonidis P, Janes A, Chaltsev D, et al. Recommending the Video to Watch Next: An Offline and Online Evaluation at YOUTV.de [C]//Proceedings of the 14th ACM Conference on Recommender Systems. 2020: 299-308.
[10] Penha G, Hauff C. What does BERT Know about Books, Movies and Music? Probing BERT for Conversational Recommendation [C]//Proceedings of the 14th ACM Conference on Recommender Systems. 2020: 388-397.
[11] Milton A, Green M, Keener A, et al. StoryTime: Eliciting Preferences from Children for Book Recommendations [C]//Proceedings of the 13th ACM Conference on Recommender Systems. 2019: 544-545.
[12] Wu Q T, Zhang H R, Gao X F, et al. Dual Graph Attention Networks for Deep Latent Representation of Multifaceted Social Effects in Recommender Systems [C]//Proceedings of the World Wide Web Conference. 2019: 2091-2102.
[13] Wu S, Tang Y Y, Zhu Y Q, et al. Session-Based Recommendation with Graph Neural Networks [C]//Proceedings of the AAAI Conference on Artificial Intelligence. 2019: 346-353.
[14] Song W P, Xiao Z P, Wang Y F, et al. Session-Based Social Recommendation via Dynamic Graph Attention Networks [C]//Proceedings of the 12th ACM International Conference on Web Search and Data Mining. 2019: 555-563.
[15] Li X C, Wang X, He X N, et al. Hierarchical Fashion Graph Network for Personalized Outfit Recommendation [C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020: 159-168.
[16] Zhang Y Y, Yang C, Niu Z X. A Research of Job Recommendation System Based on Collaborative Filtering [C]//Proceedings of the 7th International Symposium on Computational Intelligence and Design. 2014: 533-538.
[17] 阮小芸, 廖健斌, 李祥, 等. 基于人才知识图谱推理的强化学习可解释推荐研究[J]. 数据分析与知识发现, 2021, 5(6): 36-50.
[17] (Ruan Xiaoyun, Liao Jianbin, Li Xiang, et al. Interpretable Recommendation of Reinforcement Learning Based on Talent Knowledge Graph Reasoning[J]. Data Analysis and Knowledge Discovery, 2021, 5(6): 36-50.)
[18] Halder K, Kan M Y, Sugiyama K. Health Forum Thread Recommendation Using an Interest Aware Topic Model [C]//Proceedings of the 2017 ACM Conference on Information and Knowledge Management. 2017: 1589-1598.
[19] Nocker M, Sottocornola G, Zanker M, et al. Picture-Based Navigation for Diagnosing Post-Harvest Diseases of Apple [C]//Proceedings of the 12th ACM Conference on Recommender Systems. 2018: 506-507.
[20] 吴文李, 范小朋, 周庚申, 等. 面向企业生产集成系统的物料推荐系统[J]. 中国机械工程, 2019, 30(15): 1856-1865.
[20] (Wu Wenli, Fan Xiaopeng, Zhou Gengshen, et al. A Material Recommendation System for Enterprise Manufacturing Integrated Systems[J]. China Mechanical Engineering, 2019, 30(15): 1856-1865.)
[21] Sánchez P. Exploiting Contextual Information for Recommender Systems Oriented to Tourism [C]//Proceedings of the 13th ACM Conference on Recommender Systems. 2019: 601-605.
[22] Goldberg D, Nichols D, Oki B M, et al. Using Collaborative Filtering to Weave an Information Tapestry[J]. Communications of the ACM, 1992, 35(12): 61-70.
[23] Linden G, Smith B, York J. Amazon.com Recommendations: Item-to-Item Collaborative Filtering[J]. IEEE Internet Computing, 2003, 7(1): 76-80.
doi: 10.1109/MIC.2003.1167344
[24] Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions[J]. IEEE Transactions on Knowledge and Data Engineering, 2005, 17(6): 734-749.
doi: 10.1109/TKDE.2005.99
[25] Sun F P, Yu M, Zhang X L, et al. A Vocabulary Recommendation System Based on Knowledge Graph for Chinese Language Learning [C]//Proceedings of 2020 IEEE 20th International Conference on Advanced Learning Technologies. 2020: 210-212.
[26] Ji S X, Pan S R, Cambria E, et al. A Survey on Knowledge Graphs: Representation, Acquisition, and Applications[J]. IEEE Transactions on Neural Networks and Learning Systems, 2021. DOI: 10.1109/TNNLS.2021.3070843.
doi: 10.1109/TNNLS.2021.3070843
[27] 常亮, 张伟涛, 古天龙, 等. 知识图谱的推荐系统综述[J]. 智能系统学报, 2019, 14(2): 207-216.
[27] (Chang Liang, Zhang Weitao, Gu Tianlong, et al. Review of Recommendation Systems Based on Knowledge Graph[J]. CAAI Transactions on Intelligent Systems, 2019, 14(2): 207-216.)
[28] 吕刚. 基于知识图谱的个性化推荐系统研究与应用[D]. 哈尔滨: 哈尔滨师范大学, 2020.
[28] (Lv Gang. Research and Application of Personalized Recommendation System Based on Knowledge Graph[D]. Harbin: Harbin Normal University, 2020.)
[29] 刘昱良. 基于知识图谱的个性化学习资源推荐研究[D]. 新乡: 河南师范大学, 2018.
[29] (Liu Yuliang. Research on Recommendations of Personalized Learning Resources Based on Knowledge Graph[D]. Xinxiang: Henan Normal University, 2018.)
[30] Jamali M, Lakshmanan L. HeteroMF: Recommendation in Heterogeneous Information Networks Using Context Dependent Factor Models [C]//Proceedings of the 22nd International Conference on World Wide Web. 2013: 643-654.
[31] Yu X, Ren X, Gu Q Q, et al. Collaborative Filtering with Entity Similarity Regularization in Heterogeneous Information Networks [C]//Proceedings of IJCAI-13 HINA Workshop. 2013: 27.
[32] Yu X, Ren X, Sun Y Z, et al. Personalized Entity Recommendation: A Heterogeneous Information Network Approach [C]//Proceedings of the 7th ACM International Conference on Web Search and Data Mining. 2014: 283-292.
[33] Luo C, Pang W, Wang Z, et al. Hete-CF: Social-Based Collaborative Filtering Recommendation Using Heterogeneous Relations [C]//Proceedings of the 2014 IEEE International Conference on Data Mining. 2014: 917-922.
[34] Shi C, Zhang Z Q, Luo P, et al. Semantic Path based Personalized Recommendation on Weighted Heterogeneous Information Networks [C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management. 2015: 453-462.
[35] Catherine R, Cohen W. Personalized Recommendations Using Knowledge Graphs: A Probabilistic Logic Programming Approach [C]//Proceedings of the 10th ACM Conference on Recommender Systems. 2016: 325-332.
[36] Zhao H, Yao Q M, Li J D, et al. Meta-Graph Based Recommendation Fusion over Heterogeneous Information Networks [C]//Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2017: 635-644.
[37] Grover A, Leskovec J. Node2Vec: Scalable Feature Learning for Networks [C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016: 855-864.
[38] Palumbo E, Rizzo G, Troncy R. Entity2Rec: Learning User-Item Relatedness from Knowledge Graphs for Top-N Item Recommendation [C]//Proceedings of the 11th ACM Conference on Recommender Systems. 2017: 32-36.
[39] Wang H W, Zhang F Z, Xie X, et al. DKN: Deep Knowledge-Aware Network for News Recommendation [C]//Proceedings of the 2018 World Wide Web Conference. 2018: 1835-1844.
[40] Sun Z, Yang J, Zhang J, et al. Recurrent Knowledge Graph Embedding for Effective Recommendation [C]//Proceedings of the 12th ACM Conference on Recommender Systems. 2018: 297-305.
[41] Wang H W, Zhang F Z, Zhao M, et al. Multi-Task Feature Learning for Knowledge Graph Enhanced Recommendation [C]//Proceedings of the World Wide Web Conference. 2019: 2000-2010.
[42] Wang Y Q, Dong L Y, Zhang H, et al. An Enhanced Multi-Modal Recommendation Based on Alternate Training with Knowledge Graph Representation[J]. IEEE Access, 2020, 8: 213012-213026.
doi: 10.1109/Access.6287639
[43] Wang H W, Zhang F Z, Wang J L, et al. RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems [C]//Proceedings of the 27th ACM International Conference on Information and Knowledge Management. 2018: 417-426.
[44] Wang H W, Zhao M, Xie X, et al. Knowledge Graph Convolutional Networks for Recommender Systems [C]//Proceedings of the World Wide Web Conference. 2019: 3307-3313.
[45] Wang X, He X N, Cao Y X, et al. KGAT: Knowledge Graph Attention Network for Recommendation [C]//Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. 2019: 950-958.
[46] Ma J W, Zhong M Y, Wen J H, et al. RecKGC: Integrating Recommendation with Knowledge Graph Completion[A]//Advanced Data Mining and Applications[M]. Cham: Springer International Publishing, 2019: 250-265.
[47] Fan W Q, Ma Y, Li Q, et al. Graph Neural Networks for Social Recommendation [C]//Proceedings of the World Wide Web Conference. 2019: 417-426.
[48] Sun J N, Zhang Y X, Guo W, et al. Neighbor Interaction Aware Graph Convolution Networks for Recommendation [C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020: 1289-1298.
[49] Jin B B, Gao C, He X N, et al. Multi-Behavior Recommendation with Graph Convolutional Networks [C]//Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. 2020: 659-668.
[50] Shi C, Han X T, Song L, et al. Deep Collaborative Filtering with Multi-Aspect Information in Heterogeneous Networks[J]. IEEE Transactions on Knowledge and Data Engineering, 2021, 33(4): 1413-1425.
doi: 10.1109/TKDE.69
[51] Deng W W, Ma J. A Knowledge Graph Approach for Recommending Patents to Companies[J]. Electronic Commerce Research, 2021. DOI: 10.1007/s10660-021-09471-2.
doi: 10.1007/s10660-021-09471-2
[52] Guo Q Y, Zhuang F Z, Qin C, et al. A Survey on Knowledge Graph-Based Recommender Systems[J]. IEEE Transactions on Knowledge and Data Engineering, 2020. DOI: 10.1109/TKDE.2020.3028705.
doi: 10.1109/TKDE.2020.3028705
[53] Wang Q, Mao Z D, Wang B, et al. Knowledge Graph Embedding: A Survey of Approaches and Applications[J]. IEEE Transactions on Knowledge and Data Engineering, 2017, 29(12): 2724-2743.
doi: 10.1109/TKDE.2017.2754499
[54] Bordes A, Usunier N, Garcia-Durán A, et al. Translating Embeddings for Modeling Multi-Relational Data [C]// Proceedings of the 26th International Conference on Neural Information Processing Systems-Volume 2. 2013: 2787-2795.
[55] Ji G L, He S Z, Xu L H, et al. Knowledge Graph Embedding via Dynamic Mapping Matrix [C]//Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing. 2015: 687-696.
[56] Wang Z, Zhang J, Feng J, et al. Knowledge Graph Embedding by Translating on Hyperplanes [C]//Proceedings of the 28th AAAI Conference on Artificial Intelligence. 2014: 1112-1119.
[57] Xiao H, Huang M L, Hao Y, et al. TransA: An Adaptive Approach for Knowledge Graph Embedding[OL]. arXiv Preprint, arXiv: 1509.05490.
[58] Zhou W A, Wang S R, Jiang C. Knowledge Graph Embedding with Interactive Guidance from Entity Descriptions[J]. IEEE Access, 2019, 7: 156686-156693.
doi: 10.1109/Access.6287639
[59] He S Z, Liu K, Ji G L, et al. Learning to Represent Knowledge Graphs with Gaussian Embedding [C]//Proceedings of the 24th ACM International Conference on Information and Knowledge Management. 2015: 623-632.
[60] Xiao H, Huang M L, Hao Y, et al. TransG: A Generative Mixture Model for Knowledge Graph Embedding [OL]. arXiv Preprint, arXiv: 1509.05488.
[61] Sang L, Li L. Neural Collaborative Recommendation with Knowledge Graph [C]//Proceedings of the 2020 IEEE International Conference on Knowledge Graph (ICKG). 2020: 203-210.
[62] Qiu W, Du J, Li F. Knowledge Description Frame of Learning Resources for Recommendation System: From the Perspectives of Learning Psychology [C]//Proceedings of the 2020 15th International Conference on Computer Science & Education (ICCSE). 2020:438-440.
[63] Tengkiattrakul P, Maneeroj S, Takasu A. Translation-Based Embedding Model for Rating Conversion in Recommender Systems [C]//Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence. 2019: 217-224.
[64] Wu G D, Li H, Liao X Q, et al. An Automatic and Rapid Knowledge Graph Construction Method of SG-CIM Model [C]//Proceedings of the 2020 IEEE International Conference on Smart Cloud (SmartCloud). 2020: 193-198.
[65] Li L, Shi Y L, Zhang K, et al. A Co-Attention Model with Sequential Behaviors and Side Information for Session-Based Recommendation [C]//Proceedings of the 2020 IEEE International Conference on Web Services (ICWS). 2020: 118-125.
[66] 王鸿伟. 如何将知识图谱特征学习应用到推荐系统?[EB/OL]. [2021-06-08]. https://www.jiqizhixin.com/articles/2018-06-06-5.
[66] (Wang Hongwei. How to Apply Knowledge Graph Feature Learning to Recommendation System? [EB/OL]. [2021-06-08]. https://www.jiqizhixin.com/articles/2018-06-06-5.)
[67] Palumbo E, Rizzo G, Troncy R, et al. Knowledge Graph Embeddings with Node2Vec for Item Recommendation [C]//Proceedings of European Semantic Web Conference. 2018: 117-120.
[68] Miller B N, Albert I, Lam S K, et al. MovieLens Unplugged: Experiences with an Occasionally Connected Recommender System [C]//Proceedings of the 8th International Conference on Intelligent User Interfaces. 2003: 263-266.
[69] Unger M, Bar A, Shapira B, et al. Towards Latent Context-Aware Recommendation Systems[J]. Knowledge-Based Systems, 2016, 104: 165-178.
doi: 10.1016/j.knosys.2016.04.020
[70] Beigi G, Mosallanezhad A, Guo R, et al. Privacy-Aware Recommendation with Private-Attribute Protection Using Adversarial Learning [C]//Proceedings of the 13th International Conference on Web Search and Data Mining. 2020: 34-42.
[1] 周阳,李学俊,王冬磊,陈方,彭莉娟. 炸药配方设计知识图谱的构建与可视分析方法研究*[J]. 数据分析与知识发现, 2021, 5(9): 42-53.
[2] 沈科杰, 黄焕婷, 化柏林. 基于公开履历数据的人物知识图谱构建*[J]. 数据分析与知识发现, 2021, 5(7): 81-90.
[3] 阮小芸,廖健斌,李祥,杨阳,李岱峰. 基于人才知识图谱推理的强化学习可解释推荐研究*[J]. 数据分析与知识发现, 2021, 5(6): 36-50.
[4] 李贺,刘嘉宇,李世钰,吴迪,金帅岐. 基于疾病知识图谱的自动问答系统优化研究*[J]. 数据分析与知识发现, 2021, 5(5): 115-126.
[5] 代冰,胡正银. 基于文献的知识发现新近研究综述 *[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[6] 谢旺, 王丽珍, 陈红梅, 曾兰清. 基于空间序偶模式挖掘污染源与癌症病例的关系 *[J]. 数据分析与知识发现, 2021, 5(2): 14-31.
[7] 余传明, 张贞港, 孔令格. 面向链接预测的知识图谱表示模型对比研究*[J]. 数据分析与知识发现, 2021, 5(11): 29-44.
[8] 陈仕吉, 邱均平, 余波. 基于Overlay图谱的图情领域大数据主题分析*[J]. 数据分析与知识发现, 2021, 5(10): 51-59.
[9] 于硕,Hayat Dino Bedru,储新倍,袁宇渊,万良田,夏锋. 科学发现偶然性研究综述[J]. 数据分析与知识发现, 2021, 5(1): 16-35.
[10] 邵琦,牟冬梅,王萍,靳春妍. 基于语义的突发公共卫生事件网络舆情主题发现研究*[J]. 数据分析与知识发现, 2020, 4(9): 68-80.
[11] 梁野,李小元,许航,胡伊然. CLOpin:一种面向舆情分析与预警领域的跨语言知识图谱架构*[J]. 数据分析与知识发现, 2020, 4(6): 1-14.
[12] 杨恒,王思丽,祝忠明,刘巍,王楠. 基于并行协同过滤算法的领域知识推荐模型研究*[J]. 数据分析与知识发现, 2020, 4(6): 15-21.
[13] 吕华揆,洪亮,马费成. 金融股权知识图谱构建与应用*[J]. 数据分析与知识发现, 2020, 4(5): 27-37.
[14] 孙鑫瑞,孟雨,王文乐. 基于知识图谱与目标检测的微博交通事件识别*[J]. 数据分析与知识发现, 2020, 4(12): 136-147.
[15] 朱超宇, 刘雷. 基于知识图谱的医学决策支持应用综述*[J]. 数据分析与知识发现, 2020, 4(12): 26-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn