Please wait a minute...
Advanced Search
数据分析与知识发现  2022, Vol. 6 Issue (7): 1-11     https://doi.org/10.11925/infotech.2096-3467.2021.1168
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
图数据库在复杂网络分析中的研究与应用进展*
刘春江1,2(),李姝影1,胡汗林3,方曙1,2
1中国科学院成都文献情报中心 成都 610041
2中国科学院大学经济与管理学院图书情报与档案管理系 北京 100190
3四川大学公共管理学院 成都 610065
Graph Databases for Complex Network Analysis
Liu Chunjiang1,2(),Li Shuying1,Hu Hanlin3,Fang Shu1,2
1Chengdu Library and Information Center, Chinese Academy of Sciences, Chengdu 610041, China
2Department of Library, Information and Archives Management, School of Economics and Management, University of Chinese Academy of Sciences, Beijing 100190, China
3School of Public Administration, Sichuan School of Economics and Management, University, Chengdu 610065, China
全文: PDF (837 KB)   HTML ( 43
输出: BibTeX | EndNote (RIS)      
摘要 

目的】作为存储网络数据的主流工具,图数据库在复杂网络分析中的研究与应用不断丰富,本文系统梳理了图数据库在复杂网络领域的应用进展和研究趋势。【文献范围】 以Web of Science核心数据库、Scopus、CNKI数据库为检索中英文文献的来源,调研了相关文献中涉及的15个图数据库及开源网站,详细整理了21个应用案例,精读综述了14篇研究论文。【方法】对比分析国内外主流图数据库,尝试探讨最新的图数据库解决方案在复杂网络分析中的应用,包括中心性、路径查找、链路预测、社区检测和图可视化等。【结果】图数据库已经成为复杂网络分析与大数据挖掘的重要分析工具与研究手段,不仅是复杂网络分析的一站式解决方案,还与图计算引擎等工具结合使用。【局限】 图数据库应用场景非常多,本文未能完整覆盖,仅选取2~3个有代表性的案例进行阐述。【结论】图数据库对于查询、表示和挖掘网络数据效果显著,能较为直观地分析和发现图结构中有意义的模式或结构,其对数据密集型的多维特征的呈现更接近现实,是未来挖掘隐含关系的重要工具。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘春江
李姝影
胡汗林
方曙
关键词 知识图谱图数据库复杂网络    
Abstract

[Objective] This paper systematically reviews the progress and trends of graph database research and applications for complex network analysis. [Coverage] We searched the Web of Science, Scopus, and CNKI database for Chinese and English literature. A total of 15 graph databases and open-source packages, 21 practical cases, and 14 research papers were retrieved. [Methods] First, we compared the mainstream graph database products from China and abroad. Then, we explored the latest solutions for complex network analysis, including algorithms (such as centrality, path finding, link prediction, and community detection), graph visualization, performance and related applications. [Results] The graph database has become an important analysis tool and research method for complex network analysis and big data mining. They also work closely with graph computing engines for complex network analysis. [Limitations] This paper only examined a few representative cases. [Conclusions] The graph database could effectively query, represent and analyze complex network data for their patterns or structures. Their presentation of multi-dimensional data is crucial for mining implicit relationships.

Key wordsKnowledge Graph    Graph Database    Complex Network
收稿日期: 2021-10-14      出版日期: 2021-12-31
ZTFLH:  TP391  
基金资助:*国家社会科学基金项目(19BTQ088);中国科学院2020年度西部之光人才项目的研究成果之一(E1C0000201)
通讯作者: 刘春江,ORCID:0000-0001-8934-339X     E-mail: liucj@clas.ac.cn
引用本文:   
刘春江, 李姝影, 胡汗林, 方曙. 图数据库在复杂网络分析中的研究与应用进展*[J]. 数据分析与知识发现, 2022, 6(7): 1-11.
Liu Chunjiang, Li Shuying, Hu Hanlin, Fang Shu. Graph Databases for Complex Network Analysis. Data Analysis and Knowledge Discovery, 2022, 6(7): 1-11.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2021.1168      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2022/V6/I7/1
Fig.1  DB-Engines数据库模型流行度(2013-2021.9)
对比项目 简单图 多关系 多模 图数据库
节点类型 1种 1种 1种或更多 1种或更多
边类型 1种 1种或更多 1种 1种或更多
原始来源信息 外部 外部 外部 内部
支持的最大节点数量(个) <106 <106 <106 >109
代表软件 NetworkX, Iggraph Ucinet, Statnet, PNet Neo4j, Titan, DSE Graph
Table 1  图模型与多关系、多模对比[9]
名称 查询语言 支持接口 集成算法
GDB[10] Gremlin & Cypher HTTP REST, Java, Python,.NET,
GO, Node.js
支持PageRank、中介中心性、循环检测、Recommendation、最短路径等多种算法
HugeGraph[11] Gremlin RESTful API, Java Client, Gremlin
Console
支持路径搜索、协同推荐、联通子图、PersonalRank、相似度、中心性等多种算法
BGraph[12] Gremlin HTTP API, SDK 支持特色的高性能图算法
TGDB[13] Cypher 暂无数据 支持PageRank、社群发现、相似度计算、模糊子图匹配等社群发现算法
GeaBase[14] 自研查询语言 GeaBase 客户端(Java) 支持社区、推荐等算法
Nebula Graph[15] nGQL C++, GO, Python, Java 支持PageRank、社区检测、最短路径、介数中心性等多种算法
TuGraph[16] OpenCypher HTTP API 支持PageRank、路径、连通、中心性、社区等多种算法
Table 2  国内主流图数据库
名称 查询语言 支持接口 集成算法
Neo4j[17] Cypher Java, Python, JavaScript,.NET, GO, REST, HTTP API 支持Centrality、Community Detection、Similarity、
Path Finding、Link Prediction等多类算法
TigerGraph[18] GSQL REST API, Remote GSQL Client(Running by Java) 支持Path、Centrality、Community、Similarity、
Classification等5类算法
Neptune[19] Gremlin & SPARQL HTTP REST, Java, Python,.NET, Node.js
JanusGraph[20] Gremlin Java, Python,.NET 支持PageRank等算法
ArangoDB[21] AQL HTTP API, Java, JavaScript, PHP, GO,
Python, C#, Scala, C++, R等
支持路径搜索算法
AllegroGraph[22] SPARQL & Prolog Java、Python、Lisp、HTTP 支持多种中心性算法
OrientDB[23] SQL Java, Python, PHP, C++, JavaScript等 支持SB-Tree、Hash、Lucene Full Text、Lucene
Spatial等4种索引算法
Table 3  国外主流图数据库
应用场景 类型 图算法/图布局 具体描述
中心性分析[25] 基于相邻节点 PageRank、ArticleRank、Eigenvector Centrality等 基于相邻节点的重要性计算当前节点的重要性
基于节点自身 度中心性(Degree Centrality) 基于与相邻节点直接相连的关系数量计算当前节点的重要性
接近中心性(Closeness Centrality) 基于与其他节点之间的平均距离计算当前节点的重要性
中介中心性(Between Centrality) 基于当前节点出现在任意两个节点的最短路径中的次数计算当前节点的重要性
路径查找[26] 路径遍历 广度优先搜索(Breadth First Search) 通过逐层遍历所有相邻节点从而找到最短路径
深度优先搜索(Depth First Search) 对起始节点的所有分支逐个遍历
固定路径查找 最短路径(Dijkstra、A*、Yen’s) 计算两个节点之间的最短路径
所有节点对最短路径(All Pairs Shortest Path) 计算所有节点之间的最短路径
单源最短路径(Single Source Shortest Path) 计算源节点与其他可达节点之间的最短路径
最小权重生成树(Minimum Weight Spanning Tree) 计算生成树中边权值和最小情况下的路径
非固定路径查找 随机游走(Random Walk) 在指定路径长度内,计算从一个节点开始按照随机或非随机的方式选择下一个节点的路径
链接预测[26] 基于邻居节点 所有邻居(Total Neighbors) 基于两个节点的邻居节点集合并集,计算两个节点的紧密度
连接偏好(Preferential Attachment) 对节点连接数有偏好,因此将两个节点的邻居节点集合数量相乘,计算两个节点的紧密度
基于共有邻居 共有邻居(Common Neighbors) 基于两个节点的邻居节点集合交集,计算两个节点的紧密度
资源优化(Resource Allocation) 基于共有邻居的相邻节点集合,并对集合数量进行非线性归一化处理,计算两个节点的紧密度
AA(Adamic Adar) 基于共有邻居的相邻节点集合,未对集合数量进行非线性归一化处理,计算两个节点的紧密度
基于共有社区 共有社区(Same Community) 基于社区检测算法判断两个节点是否属于相同社区,计算两个节点的紧密度
社区检测[27] 基于模块度 鲁汶(Louvain) 基于社区的模块度进行社区划分
基于网络动力学 标签传播(Label Propagation) 基于节点标签的传播进行社区划分
基于簇 弱联通社区(Weakly Connected Components) 在无向图中将任意节点间均存在路径的集合形成簇,计算出社区中所有的簇
强联通簇(Strongly Connected Components) 在有向图中将任意节点间均存在双向路径的集合形成簇,计算出社区中所有的簇
基于三角形 三角计数(Triangle Count) 计算社区中相连成三角形的节点集合
局部聚类系数(Local Clustering Coefficient) 基于节点的三角形和度这两个数值,计算节点的聚类系数
图可视化[28] 集成可视化 图布局类型比较简单,以力导向布局为主 通过图数据库集成的内置可视化工具
在线可视化 图布局类型最为丰富,包括力导向、地图、圆形、
时序、树状等布局
通过Web前端的JavaScript可视化工具
Table 4  复杂网络分析领域中的重要图算法/图布局
应用场景 主要算法 图数据库
预测重大疾病保险
欺诈[29]
度中心性、中介中心性、接近中心性、特征向量中心性 Neo4j
面向科技与能力的
网络分析[30]
度中心性、紧密中心性、中介中心性、特征向量中心性 HugeGraph
分析社交网络中心
节点[31]
中心性、PageRank OrientDB
分析药品处方模式[32] 度中心性、中介中心性 Neo4j
侦查银行欺诈问题[33] 中心性、PageRank TigerGraph
Table 5  图数据库在中心性分析中的应用
应用场景 主要算法 图数据库
分析城市转供电方案[34] 广度优先搜索、深度优先搜索 Neo4j
解决QoS感知的Web
服务组合问题[35]
Dijkstra算法 Neo4j
分析国家交通网络[36] Yen的K条最短路径算法(KSP) Neo4j
分析生物医学网络[37] 最短路径算法 OrientDB
Table 6  图数据库在路径查找问题中的应用
应用场景 主要算法 图数据库
结合网络结构相似度预测社会关系[38] Common Neighbors Neo4j
基于链路预测的生物医学知识发现[39] Adamic-Adar Neo4j
结合深度强化学习构建链路预测模型[40] Common Neighbors、Adamic-Adar OrientDB
基于链路预测的作者消歧[41] Common Neighbors、Adamic-Adar Neo4j
Table 7  图数据库在链路预测问题中的应用
应用场景 主要算法 图数据库
基于社区检测算法的在线金融欺诈检测[42] Louvain、BMLPA Neo4j
基于改进关系权重的科研社区挖掘[43] Louvain Neo4j
基于社区检测算法的社交网络分析[44] Louvain、Edge Betweeness、Walktrap、CNM Neo4j
基于社区检测算法的道路交通网络分析[45] Louvain Neo4j
Table 8  图数据库在社区检测问题中的应用
应用场景 应用方式 图可视化工具 图数据库
知识关联可视化[47] 在线可视化 Echarts.js Neo4j
面向医学知识图谱的可视化[48] 集成可视化 Neo4j Neo4j
生物医学数据检索及可视化[49] 在线可视化 Cytoscape.js Neo4j
Twitter Troll 数据集可视化[50] 集成可视化 Neo4j Neo4j
Table 9  图数据库在图可视化方面的应用
[1] Alhussien I, Cambria E, Zhang N S. Semantically Enhanced Models for Commonsense Knowledge Acquisition[C]// Proceedings of the 2018 IEEE International Conference on Data Mining Workshops. IEEE, 2018: 1014-1021.
[2] Paulheim H. Knowledge Graph Refinement: A Survey of Approaches and Evaluation Methods[J]. Semantic Web, 2016, 8: 489-508.
doi: 10.3233/SW-160218
[3] 沈志宏, 赵子豪, 王海波. 以图为中心的新型大数据技术栈研究[J]. 数据分析与知识发现, 2020, 4(7): 50-65.
[3] ( Shen Zhihong, Zhao Zihao, Wang Haibo. Big Data Technology Stack Shifting: From SQL Centric to Graph Centric[J]. Data Analysis and Knowledge Discovery, 2020, 4(7): 50-65.)
[4] DBMS Popularity Broken Down by Database Model[EB/OL]. [2021-09-02]. https://db-engines.com/en/ranking_categories.
[5] Šestak M, Heričko M, Družovec T W, et al. Applying K-Vertex Cardinality Constraints on a Neo4j Graph Database[J]. Future Generation Computer Systems, 2021, 115: 459-474.
doi: 10.1016/j.future.2020.09.036
[6] Gutfraind A, Genkin M. A Graph Database Framework for Covert Network Analysis: An Application to the Islamic State Network in Europe[J]. Social Networks, 2017, 51: 178-188.
doi: 10.1016/j.socnet.2016.10.004
[7] Breiger R L, Schoon E, Melamed D, et al. Comparative Configurational Analysis as a Two-Mode Network Problem: A Study of Terrorist Group Engagement in the Drug Trade[J]. Social Networks, 2014, 36: 23-39.
doi: 10.1016/j.socnet.2013.04.002
[8] Chu Z, Yu J, Hamdulla A. A Novel Deep Learning Method for Query Task Execution Time Prediction in Graph Database[J]. Future Generation Computer Systems, 2020, 112: 534-548.
doi: 10.1016/j.future.2020.06.006
[9] Gutfraind A, Genkin M. A Graph Database Framework for Covert Network Analysis: An Application to the Islamic State Network in Europe[J]. Social Networks, 2017, 51: 178-188.
doi: 10.1016/j.socnet.2016.10.004
[10] 图数据库GDB-帮助中心-阿里云[EB/OL]. [2021-10-10]. https://help.aliyun.com/product/102714.html.
[10] (Graph Database GDB-Help Center-Alibaba Cloud[EB/OL]. [2021-10-10]. https://help.aliyun.com/product/102714.html. )
[11] HugeGraph[EB/OL]. [2021-10-10]. https://hugegraph.github.io/hugegraph-doc/.
[12] 图数据库BGraph-百度AI开放平台[EB/OL]. [2021-10-10]. https://ai.baidu.com/tech/kg/bgraph.
[12] (Graph Database BGraph-Baidu AI Open Platform[EB/OL]. [2021-10-10]. https://ai.baidu.com/tech/kg/bgraph. )
[13] 图数据库Graph Database | 腾讯云[EB/OL]. [2021-10-10]. https://intl.cloud.tencent.com/zh/products/konisgraph?lang=zh.
[13] (Graph Database | Tencent Cloud[EB/OL]. [2021-10-10]. https://intl.cloud.tencent.com/zh/products/konisgraph?lang=zh. )
[14] 蚂蚁金服金融科技-分布式图数据库[EB/OL]. [2021-10-10]. https://tech.antfin.com/products/GEABASE.
[14] (Ant Financial Technology-Distributed Graph Database[EB/OL]. [2021-10-10]. https://tech.antfin.com/products/GEABASE. )
[15] Nebula Graph开源分布式图数据库[EB/OL]. [2021-10-10]. https://www.nebula-graph.com.cn/.
[15] (Nebula Graph Open Source Distributed Graph Database[EB/OL]. [2021-10-10]. https://www.nebula-graph.com.cn/. )
[16] 费马TuGraph图数据库[EB/OL]. [2021-10-10]. https://fma-ai.cn/product/.
[16] (Feima TuGraph Graph Database[EB/OL]. [2021-10-10]. https://fma-ai.cn/product/. )
[17] Native Graph Database|Neo4j Graph Database Platform[EB/OL]. [2021-10-10]. https://neo4j.com/product/neo4j-graph-database/.
[18] Graph Database|Graph Analytics Platform | TigerGraph[EB/OL]. [2021-10-10]. https://www.tigergraph.com/.
[19] Getting Started with Graph Databases-Amazon Neptune[EB/OL]. [2021-10-10]. https://docs.aws.amazon.com/neptune/latest/userguide/graph-get-started.html.
[20] JanusGraph[EB/OL]. [2021-10-10]. https://janusgraph.org.
[21] ArangoDB, the Multi-Model Database for Graph and Beyond[EB/OL]. [2021-10-10]. https://www.arangodb.com/.
[22] AllegroGraph[EB/OL]. [2021-10-10]. https://allegrograph.com/.
[23] Home | OrientDB Community Edition[EB/OL]. [2021-10-10]. https://orientdb.org/.
[24] 覃悦. 基于中心性的算法在复杂网络分析中的应用及对比研究——以文本网络为例[D]. 天津: 天津财经大学, 2020.
[24] ( Qin Yue. Application and Contrast Research of Centrality-Based Algorithms in Complex Network Analysis—Take Text Network as an Example[D]. Tianjin: Tianjin University of Finance & Economics, 2020.)
[25] Needham M, Hodler A E. Graph Algorithms: Practical Examples in Apache Spark and Neo4j[M]. O’Reilly Media, 2019.
[26] Lü L Y, Zhou T. Link Prediction in Complex Networks: A Survey[J]. Physica A: Statistical Mechanics and Its Applications, 2011, 390(6): 1150-1170.
doi: 10.1016/j.physa.2010.11.027
[27] 赵卫绩, 张凤斌, 刘井莲. 复杂网络社区发现研究进展[J]. 计算机科学, 2020, 47(2): 10-20.
[27] ( Zhao Weiji, Zhang Fengbin, Liu Jinglian. Review on Community Detection in Complex Networks[J]. Computer Science, 2020, 47(2): 10-20.)
[28] Shneiderman B, Aris A. Network Visualization by Semantic Substrates[J]. IEEE Transactions on Visualization and Computer Graphics, 2006, 12(5): 733-740.
pmid: 17080794
[29] 周晓楠, 黄磊, 王飞跃, 等. 图数据库在识别重大疾病保险团伙式欺诈中的应用研究[J]. 保险研究, 2020(9): 92-104.
[29] ( Zhou Xiaonan, Huang Lei, Wang Feiyue, et al. On the Application of Graph Database on Identifying Critical Illness Insurance Group Fraud[J]. Insurance Studies, 2020(9): 92-104.)
[30] 王猛. 面向科技与能力网络的关联分析系统[D]. 大连: 大连理工大学, 2020.
[30] ( Wang Meng. Association Analysis System for Technology and Ability Network[D]. Dalian: Dalian University of Technology, 2020.)
[31] Kolomeets M, Chechulin A, Kotenko I. Social Networks Analysis by Graph Algorithms on the Example of the VKontakte Social Network[J]. Journal of Wireless Mobile Networks, Ubiquitous Computing, and Dependable Applications, 2019, 10: 55-75.
[32] Giordani I, Archetti F, Candelieri A, et al. Graph Data Base: An Enabling Technology for Drug Prescription Patterns Analysis[J]. Statistica Applicata-Italian Journal of Applied Statistics, 2020 (2): 181-192.
[33] Henderson R. Using Graph Databases to Detect Financial Fraud[J]. Computer Fraud & Security, 2020, 2020(7): 6-10.
[34] 王一苇, 胡林麟, 罗程, 等. 集成图数据库算法和模式匹配的城市高压电网转供电方案生成[J]. 电测与仪表, 2022, 59(4): 169-177.
[34] ( Wang Yiwei, Hu Linlin, Luo Cheng, et al. Generation of Urban High-Voltage Power Grid Transfer Power Supply Scheme Based on Integrated Graph Database Algorithm and Pattern Matching[J]. Electrical Measurement & Instrumentation, 2022, 59(4): 169-177.)
[35] 范国栋. 模糊决策与图数据库在服务组合中的研究与应用[D]. 淄博: 山东理工大学, 2020.
[35] ( Fan Guodong. Research and Application of Fuzzy Decision and Graph Database in Service Composition[D]. Zibo: Shandong University of Technology, 2020.)
[36] Permana S D H, Bintoro K B Y, Arifitama B, et al. Comparative Analysis of Pathfinding Algorithms A*, Dijkstra, and BFS on Maze Runner Game[J]. International Journal of Information Systems & Technology, 2018, 1(2): 1-8.
[37] Lysenko A, Roznovăţ I A, Saqi M, et al. Representing and Querying Disease Networks Using Graph Databases[J]. BioData Mining, 2016, 9: 23.
doi: 10.1186/s13040-016-0102-8 pmid: 27462371
[38] 郭坤铭. 基于异构网络的关系推理与预测方法研究[D]. 太原: 太原理工大学, 2017.
[38] ( Guo Kunming. Research on Relation Inference and Prediction in Heterogeneous Network[D]. Taiyuan: Taiyuan University of Technology, 2017.)
[39] 胡正银, 刘蕾蕾, 代冰, 等. 基于领域知识图谱的生命医学学科知识发现探析[J]. 数据分析与知识发现, 2020, 4(11): 1-14.
[39] ( Hu Zhengyin, Liu Leilei, Dai Bing, et al. Discovering Subject Knowledge in Life and Medical Sciences with Knowledge Graph[J]. Data Analysis and Knowledge Discovery, 2020, 4(11): 1-14.)
[40] Lim M, Abdullah A, Jhanjhi N. Performance Optimization of Criminal Network Hidden Link Prediction Model with Deep Reinforcement Learning[J]. Journal of King Saud University-Computer and Information Sciences, 2021, 33(10): 1202-1210.
doi: 10.1016/j.jksuci.2019.07.010
[41] Franzoni V, Lepri M, Milani A. Topological and Semantic Graph-Based Author Disambiguation on DBLP Data in Neo4j[OL]. arXiv Preprint, arXiv: 1901.08977.
[42] 施朝浩. 基于图特征的欺诈检测方法研究与应用[D]. 杭州: 浙江大学, 2019.
[42] ( Shi Chaohao. Research and Application of Fraud Detection Method Based on Graph Features[D]. Hangzhou: Zhejiang University, 2019.)
[43] 杜伟静, 李翀, 王宇宸, 等. Web of Science科研社区挖掘算法研究[J]. 小型微型计算机系统, 2020, 41(12): 2465-2469.
[43] ( Du Weijing, Li Chong, Wang Yuchen, et al. Research on Web of Science Academic Community Mining Algorithm[J]. Journal of Chinese Computer Systems, 2020, 41(12): 2465-2469.)
[44] Drakopoulos G, Gourgaris P, Kanavos A. Graph Communities in Neo4j[J]. Evolving Systems, 2020, 11(3): 397-407.
doi: 10.1007/s12530-018-9244-x
[45] Rashmi R, Champawat S, Teja G V, et al. Analysis of Road Networks Using the Louvain Community Detection Algorithm[A]//Soft Computing for Problem Solving[M]. Springer, 2020: 749-757.
[46] 任磊, 杜一, 马帅, 等. 大数据可视分析综述[J]. 软件学报, 2014, 25(9): 1909-1936.
[46] ( Ren Lei, Du Yi, Ma Shuai, et al. Visual Analytics Towards Big Data[J]. Journal of Software, 2014, 25(9): 1909-1936.)
[47] 马雨萌, 王昉, 黄金霞, 等. 基于文献知识抽取的专题知识库构建研究——以中药活血化瘀专题知识库为例[J]. 情报学报, 2019, 38(5): 482-491.
[47] ( Ma Yumeng, Wang Fang, Huang Jinxia, et al. Research on Construction of a Subject Knowledge Base Based on Literature Knowledge Extraction: Using the Knowledge Base of Activating Blood Circulation and Removing Stasis as the Object[J]. Journal of the China Society for Scientific and Technical Information, 2019, 38(5): 482-491.)
[48] 马欢欢. 基于电子病历的癫痫医学知识图谱构建的研究[D]. 曲阜: 曲阜师范大学, 2020.
[48] ( Ma Huanhuan. Research on the Construction of Epilepsy Medical Knowledge Graph Based on Electronic Medical Records[D]. Qufu: Qufu Normal University, 2020.)
[49] Messina A, Fiannaca A la Paglia L, et al. BioGraph: A Web Application and a Graph Database for Querying and Analyzing Bioinformatics Resources[J]. BMC Systems Biology, 2018, 12(S5): 75-89.
doi: 10.1186/s12918-018-0597-3
[50] Allen D, Hodler A, Hunger M, et al. Understanding Trolls with Efficient Analytics of Large Graphs in Neo4j[C]// Proceedings of the 2019 Datenbanksysteme für Business, Technologie und Web, 2019: 377-396.
[1] 张晗, 安欣宇, 刘春鹤. 基于多源语义知识图谱的药物知识发现:以药物重定位为实证*[J]. 数据分析与知识发现, 2022, 6(7): 87-98.
[2] 刘勘, 徐勤亚, 於陆. 面向营商环境的知识图谱构建研究*[J]. 数据分析与知识发现, 2022, 6(4): 82-96.
[3] 张卫, 王昊, 陈玥彤, 范涛, 邓三鸿. 融合迁移学习与文本增强的中文成语隐喻知识识别与关联研究*[J]. 数据分析与知识发现, 2022, 6(2/3): 167-183.
[4] 刘政昊, 钱宇星, 衣天龙, 吕华揆. 知识关联视角下金融证券知识图谱构建与相关股票发现*[J]. 数据分析与知识发现, 2022, 6(2/3): 184-201.
[5] 程子佳, 陈翀. 面向流行性疾病科普的用户问题理解与答案内容组织*[J]. 数据分析与知识发现, 2022, 6(2/3): 202-211.
[6] 侯党, 傅湘玲, 高嵩峰, 彭雷, 王友军, 宋美琦. 基于企业知识图谱的企业关联关系挖掘*[J]. 数据分析与知识发现, 2022, 6(2/3): 212-221.
[7] 徐选华, 黄丽. 基于复杂网络的大群体应急决策专家意见与信任信息融合方法及应用*[J]. 数据分析与知识发现, 2022, 6(2/3): 348-363.
[8] 周阳,李学俊,王冬磊,陈方,彭莉娟. 炸药配方设计知识图谱的构建与可视分析方法研究*[J]. 数据分析与知识发现, 2021, 5(9): 42-53.
[9] 沈科杰, 黄焕婷, 化柏林. 基于公开履历数据的人物知识图谱构建*[J]. 数据分析与知识发现, 2021, 5(7): 81-90.
[10] 阮小芸,廖健斌,李祥,杨阳,李岱峰. 基于人才知识图谱推理的强化学习可解释推荐研究*[J]. 数据分析与知识发现, 2021, 5(6): 36-50.
[11] 陈文杰,文奕,杨宁. 基于节点向量表示的模糊重叠社区划分算法*[J]. 数据分析与知识发现, 2021, 5(5): 41-50.
[12] 李贺,刘嘉宇,李世钰,吴迪,金帅岐. 基于疾病知识图谱的自动问答系统优化研究*[J]. 数据分析与知识发现, 2021, 5(5): 115-126.
[13] 代冰,胡正银. 基于文献的知识发现新近研究综述 *[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[14] 朱冬亮, 文奕, 万子琛. 基于知识图谱的推荐系统研究综述*[J]. 数据分析与知识发现, 2021, 5(12): 1-13.
[15] 余传明, 张贞港, 孔令格. 面向链接预测的知识图谱表示模型对比研究*[J]. 数据分析与知识发现, 2021, 5(11): 29-44.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn