Please wait a minute...
Advanced Search
数据分析与知识发现  2022, Vol. 6 Issue (8): 31-40     https://doi.org/10.11925/infotech.2096-3467.2021.1042
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
因果知识引导的技术机会发现——以电动汽车充电桩为例*
柳林林1,2,宫大庆3(),张玉洁4,白如江4
1淄博职业学院人工智能与大数据学院 淄博 255314
2曼彻斯特大学全球发展学院 曼彻斯特 M139PL
3北京交通大学经济管理学院 北京 100044
4山东理工大学信息管理研究院 淄博 255049
Discovering Technology Opportunities with Causal Knowledge: Case Study of EV Charging Stations
Liu Linlin1,2,Gong Daqing3(),Zhang Yujie4,Bai Rujiang4
1Institute of Artificial Intelligence and Big Data, Zibo Vocational Institute, Zibo 255314, China
2The Global Development Institute, The University of Manchester, Manchester M139PL, UK
3School of Economics and Management, Beijing Jiaotong University, Beijing 100044, China
4Institute of Information Management, Shandong University of Technology, Zibo 255049, China
全文: PDF (1838 KB)   HTML ( 25
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 将因果思想引入技术机会发现,提出从技术文本的因果知识中识别技术机会,并以电动汽车充电桩为例进行实证研究。【方法】 提出因果对自动抽取、因果网络构建、技术机会匹配发现三步骤法。首先,利用规则匹配方法,基于因果触发词和规则模板,自动抽取出多源数据中蕴含的因果对,并以三元组结构表征;然后,构建包含技术要素的因果网络;同时,通过情感识别、需求词抽取等步骤发现用户使用过程中的需求因素;最后,通过对因果网络进行链路预测,补全潜在因果关联,并与用户需求因素进行匹配,最终实现技术机会发现。【结果】 分析发现,充电桩的电池性能和价格费用分别是提升技术性能和用户满意度的关键因素。通过对比两种算法,结果显示,GraphSAGE算法比Node2Vec算法能更准确预测连边,有效识别充电桩的潜在技术机会。【局限】 因果网络的稀疏性导致准确性还有待提高。【结论】 所提方法能够促进科学技术的创新机会识别,旨在发现潜在的不确定性问题,为进一步的技术优化和产业升级提供参考。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
柳林林
宫大庆
张玉洁
白如江
关键词 技术机会发现充电桩因果智能    
Abstract

[Objective] This paper proposes a new method to identify technology opportunities from documents with the help of causal knowledge. [Methods] The proposed method includes three steps of automatic extraction of causal pairs, construction of causal network and discovery of matching tech-opportunities. Firstly, we used the rule matching method to automatically extract the causal pairs from multi-source data based on causal trigger words and rule templates. We also represented these pairs by triple structure. Then, we constructed the causal network including technical elements and found the demand factors in the process of use. Finally, we completed the potential causal correlation with the link prediction of causal network, which was matched with user demand factors and helped us discover tech-opportunities. [Results] We examined the proposed model with charging stations data of the EVs. We found the battery performance and charging costs are the key factors to improve technical performance and user experience. The GraphSAGE algorithm can more accurately predict the edge connection than Node2Vec, which effectively identify the potential technical opportunities. [Limitations] The accuracy of the proposed method needs to be improved. [Conclusions] The proposed method could effectively discover sci-tech innovation opportunities, as well as potential uncertain issues, which provides reference for further technology optimization and industry upgrading.

Key wordsTechnology Opportunity Discovery    Electric Vehicle Charging Stations    Causal AI
收稿日期: 2021-09-16      出版日期: 2022-09-23
ZTFLH:  G35  
基金资助:*国家社会科学基金项目(21BTQ071);北京市自然科学基金项目的研究成果之一(9222025)
通讯作者: 宫大庆,ORCID:0000-0001-9421-6379     E-mail: dqgong@bjtu.edu.cn
引用本文:   
柳林林, 宫大庆, 张玉洁, 白如江. 因果知识引导的技术机会发现——以电动汽车充电桩为例*[J]. 数据分析与知识发现, 2022, 6(8): 31-40.
Liu Linlin, Gong Daqing, Zhang Yujie, Bai Rujiang. Discovering Technology Opportunities with Causal Knowledge: Case Study of EV Charging Stations. Data Analysis and Knowledge Discovery, 2022, 6(8): 31-40.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2021.1042      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2022/V6/I8/31
Fig.1  因果知识引导的技术机会发现的整体框架
Fig.2  基于规则模板的因果抽取示例
Fig.3  技术机会发现示例
类型 数量
论文 4 132
专利 5 503
新闻报道 1 327
用户评论 738
Table 1  电动汽车充电桩数据类型分布
年份 数量 年份 数量
2021 1 097 2011 336
2020 1 213 2010 546
2019 1 482 2009 12
2018 1 640 2008 7
2017 1 941 2006 2
2016 1 589 2005 2
2015 811 2004 1
2014 464 1998 2
2013 267 1992 1
2012 287
Table 2  电动汽车充电桩数据时间分布
S A O
模块化结构 使得 容量拓展性好
电缆高温 引起 火灾问题
插卡处 导致 读卡失灵问题
大量谐波电流 造成 负面影响
块底座结构 使得 外壳安装紧固
桩故障 导致 收费问题
漏电情况 造成 人员受伤
系统损耗 引起 节点电压波动
组团式城市规划 促进 新能源汽车进入快车道
环境污染 促进 电动汽车产业发展
... ... ...
Table 3  部分充电桩技术元素的因果三元组
Fig.4  充电桩技术元素的因果网络
节点 PR值
电线 0.013 962 08
谐波 0.012 630 43
环境温度 0.009 804 63
压力 0.007 569 61
配电网 0.005 521 61
充电机 0.005 440 81
环境污染 0.004 022 72
成本增加 0.002 777 03
声光效应 0.002 756 23
安全事故 0.001 911 90
环境污染问题 0.001 489 74
产业政策 0.001 489 74
Table 4  充电桩网络部分节点的PR值
指标 Node2Vec GraphSAGE
训练集 测试集 训练集 测试集
损失 0.625 0.666 1.042 1.487
准确率 0.729 0.740 0.793 0.765
Table 5  Node2Vec和GraphSAGE算法训练结果
正向关键词 频次 负向关键词 频次
便利 99 停车费 48
环境 66 油车 40
流畅 54 32
专人 33 故障 28
设施 30 等待 27
停车费 24 24
19 不稳定 9
还不错 5 错误 4
方便 5 不准 3
很不错 3 不方便 3
Table 6  不同情绪下关键词及频次
[1] 关于科技创新和发展, 读懂习近平强调的这三个要点[EB/OL].(2020-09-18).[2022-04-09]. http://theory.people.com.cn/n1/2020/0918/c40531-31866102.html.
[1] (Regarding Scientific and Technological Innovation and Development, Understand the Three Points Emphasized by Xi Jinping[EB/OL](2020-09-18). [2022-04-09]. http://theory.people.com.cn/n1/2020/0918/c40531-31866102.html.)
[2] Yoon J, Park H, Seo W, et al. Technology Opportunity Discovery (TOD) from Existing Technologies and Products: A Function-based TOD Framework[J]. Technological Forecasting and Social Change, 2015, 100: 153-167.
doi: 10.1016/j.techfore.2015.04.012
[3] Park Y, Yoon J. Application Technology Opportunity Discovery from Technology Portfolios: Use of Patent Classification and Collaborative Filtering[J]. Technological Forecasting and Social Change, 2017, 118: 170-183.
doi: 10.1016/j.techfore.2017.02.018
[4] Porter A L, Detampel M J. Technology Opportunities Analysis[J]. Technological Forecasting and Social Change, 1995, 49(3): 237-255.
doi: 10.1016/0040-1625(95)00022-3
[5] Choi J, Jeong B, Yoon J. Technology Opportunity Discovery under the Dynamic Change of Focus Technology Fields: Application of Sequential Pattern Mining to Patent Classifications[J]. Technological Forecasting and Social Change, 2019, 148: 119737.
doi: 10.1016/j.techfore.2019.119737
[6] 吕一博, 康宇航, 王淑娟. 基于共现分析的技术机会发现与可视化识别[J]. 科研管理, 2012, 33(4): 80-85.
[6] (Lv Yibo, Kang Yuhang, Wang Shujuan. Visualized Identification and Discovery of Technology Opportunities Based on Co-occurrence Analysis[J]. Science Research Management, 2012, 33(4): 80-85.)
[7] 任智军, 乔晓东, 徐硕, 等. 基于数据挖掘的技术机会发现模型研究[J]. 情报杂志, 2015, 34(6): 174-177, 190.
[7] (Ren Zhijun, Qiao Xiaodong, Xu Shuo, et al. An Approach for Technology Opportunities Discovery Model Based on Data Mining[J]. Journal of Intelligence, 2015, 34(6): 174-177, 190.)
[8] Ren H Y, Zhao Y H. Technology Opportunity Discovery Based on Constructing, Evaluating, and Searching Knowledge Networks[J]. Technovation, 2021, 101: 102196.
doi: 10.1016/j.technovation.2020.102196
[9] Guo J F, Wang X F, Li Q R, et al. Subject-Action-Object-Based Morphology Analysis for Determining the Direction of Technological Change[J]. Technological Forecasting and Social Change, 2016, 105: 27-40.
doi: 10.1016/j.techfore.2016.01.028
[10] 方曙, 胡正银, 庞弘燊, 等. 基于专利文献的技术演化分析方法研究[J]. 图书情报工作, 2011, 55(22): 42-46.
[10] (Fang Shu, Hu Zhengyin, Pang Hongshen, et al. Study on the Method of Analyzing Technology Evolution Based on Patent Documents[J]. Library and Information Service, 2011, 55(22): 42-46.)
[11] 胡正银, 方曙. 专利文本技术挖掘研究进展综述[J]. 现代图书情报技术, 2014(6): 62-70.
[11] (Hu Zhengyin, Fang Shu. Review on Text-based Patent Technology Mining[J]. New Technology of Library and Information Service, 2014(6): 62-70.)
[12] 胡正银, 方曙, 张娴, 等. 个性化语义TRIZ构建研究[J]. 图书情报工作, 2015, 59(7): 123-131.
doi: 10.13266/j.issn.0252-3116.2015.07.017
[12] (Hu Zhengyin, Fang Shu, Zhang Xian, et al. Study on Personalized Semantic TRIZ[J]. Library and Information Service, 2015, 59(7): 123-131.)
doi: 10.13266/j.issn.0252-3116.2015.07.017
[13] 董坤, 白如江, 许海云. 省域视角下产业潜在“卡脖子”技术识别与分析研究——以山东省区块链产业为例[J]. 情报理论与实践, 2021, 44(11): 197-203.
[13] (Dong Kun, Bai Rujiang, Xu Haiyun. A Method to Identify and Analyze Industrial Bottleneck Technology (BNT) from the Provincial Perspective: A Case Study of Block Chain Industry in Shandong Province[J]. Information Studies: Theory & Application, 2021, 44(11): 197-203.)
[14] 许轶, 李婧, 许海云, 等. 基于专利动态特征的技术转移潜力识别研究[J]. 农业图书情报学报, 2021, 33(6): 107-115.
[14] (Xu Yi, Li Jing, Xu Haiyun, et al. Identification of Technology Transfer Potential Based on Patent Dynamic Characteristics[J]. Journal of Library and Information Science in Agriculture, 2021, 33(6): 107-115.)
[15] 许海云, 张慧玲, 武华维, 等. 新兴研究主题在演化路径上的关键时间点研究[J]. 图书情报工作, 2021, 65(8): 51-64.
doi: 10.13266/j.issn.0252-3116.2021.08.006
[15] (Xu Hainyun, Zhang Huiling, Wu Huawei, et al. Key Time-Points of Emerging Research Topic on Their Evolution Path[J]. Library and Information Service, 2021, 65(8): 51-64.)
doi: 10.13266/j.issn.0252-3116.2021.08.006
[16] 刘亚辉, 许海云. 突破性创新早期识别与弱信号分析综述[J]. 图书情报工作, 2021, 65(4): 89-101.
doi: 10.13266/j.issn.0252-3116.2021.04.010
[16] (Liu Yahui, Xu Haiyun. A Review of Early Recognition of Breakthrough Innovations and the Weak Signal Analysis[J]. Library and Information Service, 2021, 65(4): 89-101.)
doi: 10.13266/j.issn.0252-3116.2021.04.010
[17] 现代经济学的因果推断革命——2021年诺贝尔经济学奖解读[EB/OL].(2021-10-13). [2022-04-09]. https://new.qq.com/omn/20211013/20211013A00P7N00.html.
[17] (Revolution of Cause-and-Effect Inference in Modern Economics: Interpretation of the Nobel Prize in Economics in 2021[EB/OL].(2021-10-13). [2022-04-09]. https://new.qq.com/omn/20211013/20211013A00P7N00.html.)
[18] Pearl J, Mackenzie D. The Book of Why: The New Science of Cause and Effect[M]. London: Penguin, 2018.
[19] Imbens G W, Rubin D B. Causal Inference for Statistics, Social, and Biomedical Sciences[M]. Cambridge: Cambridge University Press, 2015.
[20] Zhao Z Y, Bu Y, Kang L L, et al. An Investigation of the Relationship Between Scientists’ Mobility to/from China and Their Research Performance[J]. Journal of Informetrics, 2020, 14(2): 101037.
doi: 10.1016/j.joi.2020.101037
[21] Yao L Y, Chu Z X, Li S, et al. A Survey on Causal Inference[J]. ACM Transactions on Knowledge Discovery from Data, 2021, 15(5): 74.
[22] Yang J, Han S C, Poon J. A Survey on Extraction of Causal Relations from Natural Language Text[J]. Knowledge and Information Systems, 2022, 64(5): 1161-1186.
doi: 10.1007/s10115-022-01665-w
[23] Kayesh H, Islam M, Wang J H. On Event Causality Detection in Tweets[OL]. arXiv Preprint, arXiv:1901.03526.
[24] Zhao S D, Wang Q, Massung S, et al. Constructing and Embedding Abstract Event Causality Networks from Text Snippets[C]// Proceedings of the 10th ACM International Conference on Web Search and Data Mining. 2017: 335-344.
[25] Li Z Y, Ding X, Liu T. Constructing Narrative Event Evolutionary Graph for Script[C]// Proceedings of the 27th International Joint Conference on Artificial Intelligence. 2018: 4201-4207.
[26] Grover A, Leskovec J. Node2Vec: Scalable Feature Learning for Networks[C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2016: 855-864.
[27] Hamilton W L, Ying R, Leskovec J. Inductive Representation Learning on Large Graphs[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. 2017:1025-1035.
[28] Sun Y, Wang S H, Li Y K, et al. ERNIE: Enhanced Representation Through Knowledge Integration[OL]. arXiv Preprint, arXiv:1904.09223.
[29] Jiao Z Y, Sun S Q, Sun K. Chinese Lexical Analysis with Deep Bi-GRU-CRF Network[OL]. arXiv Preprint, arXiv:1807.01882.
[30] 发展改革委关于印发《提升新能源汽车充电保障能力行动计划》的通知[EB/OL].(2018-12-10). [2022-04-09]. http://www.gov.cn/xinwen/2018-12/10/content_5347391.htm.
[30] (Notice of the Development and Reform Commission on the Issuance of the Action Plan for Enhancing the Charging Guarantee Capability of New Energy Vehicles[EB/OL].(2018-12-10). [2022-04-09]. http://www.gov.cn/xinwen/2018-12/10/content_5347391.htm.)
[31] Hagberg A A, Schult D A, Swart P J. Exploring Network Structure, Dynamics, and Function Using NetworkX[C]// Proceedings of the 7th Python in Science Conference. 2008: 11-16.
[1] 吕海华, 李江. 知识扩散中的“常识化后免于引用”现象:一项评述[J]. 数据分析与知识发现, 2022, 6(8): 12-19.
[2] 张金柱, 王秋月, 仇蒙蒙. 颠覆性技术识别研究进展综述*[J]. 数据分析与知识发现, 2022, 6(7): 12-31.
[3] 张晗, 安欣宇, 刘春鹤. 基于多源语义知识图谱的药物知识发现:以药物重定位为实证*[J]. 数据分析与知识发现, 2022, 6(7): 87-98.
[4] 陈仕吉, 崔腾腾, 邱均平. 学科交叉动力学分析研究综述*[J]. 数据分析与知识发现, 2022, 6(5): 1-9.
[5] 王露, 乐小虬. 科技论文引用内容分析研究进展[J]. 数据分析与知识发现, 2022, 6(4): 1-15.
[6] 陈果, 叶潮. 融合半监督学习与主动学习的细分领域新闻分类研究*[J]. 数据分析与知识发现, 2022, 6(4): 28-38.
[7] 王若佳, 严承希, 郭凤英, 王继民. 基于用户画像的在线健康社区用户流失预测研究*[J]. 数据分析与知识发现, 2022, 6(2/3): 80-92.
[8] 佟昕瑀, 赵蕊洁, 路永和. 基于预训练模型的多标签专利分类研究*[J]. 数据分析与知识发现, 2022, 6(2/3): 129-137.
[9] 张金柱, 韩永亮. 基于多特征的技术融合关系预测及其价值评估*[J]. 数据分析与知识发现, 2022, 6(2/3): 33-44.
[10] 王楠, 李海荣, 谭舒孺. 基于舆情事件演化分析及改进KE-SMOTE算法的舆情反转预测研究*[J]. 数据分析与知识发现, 2022, 6(2/3): 396-408.
[11] 钱旦敏, 曾婷婷, 常侍艺. 突发公共卫生事件下基于在线健康社区用户画像的用户角色研究*[J]. 数据分析与知识发现, 2022, 6(2/3): 93-104.
[12] 聂卉, 吴晓燕, 林芸. 基于在线问诊记录的抑郁症病患群组划分与特征分析*[J]. 数据分析与知识发现, 2022, 6(2/3): 222-232.
[13] 曹广, 沈丽宁. 基于SEIR模型的网络医疗众筹传播建模与仿真分析*[J]. 数据分析与知识发现, 2022, 6(1): 80-90.
[14] 韩芳, 张生太, 冯凌子, 袁军鹏. 基于专利文献技术融合测度的突破性创新主题识别*——以太阳能光伏领域为例[J]. 数据分析与知识发现, 2021, 5(12): 137-147.
[15] 周志超. 基于机器学习技术的自动引文分类研究综述*[J]. 数据分析与知识发现, 2021, 5(12): 14-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn