Please wait a minute...
Advanced Search
数据分析与知识发现  2022, Vol. 6 Issue (12): 80-89     https://doi.org/10.11925/infotech.2096-3467.2022.0144
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
通过重叠社区结构识别社交网络中的影响力节点*
王烨桐,江涛()
西北民族大学中国民族语言文字信息技术教育部重点实验室 兰州 730030
Identifying Influential Nodes in Social Networks by Overlapping Community Structure
Wang Yetong,Jiang Tao()
Key Laboratory of China’s Ethnic Languages and Information Technology of Ministry of Education, Northwest Minzu University, Lanzhou 730030, China
全文: PDF (1247 KB)   HTML ( 11
输出: BibTeX | EndNote (RIS)      
摘要 

目的】 为快速找出网络中最具影响力的节点,提出使用重叠社区的影响力最大化方法IMtoc。【方法】 将整个社交网络分割为几个重叠社区,综合特征向量中心性最大的节点和重叠节点,选出候选种子集,然后通过贪心算法在候选集中找到最优的种子节点。【结果】 对于大型社交网络Git_web_ml数据集,IMtoc算法的运行时间比CELF和IMRank算法快约91%和65%。【局限】 影响力节点与重叠节点存在重合,造成部分节点代表性不足。【结论】 IMtoc算法与现有方法相比存在一定优势,可以在影响范围和运行时间之间取得平衡。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王烨桐
江涛
关键词 社交网络重叠社区影响力最大化信息传播    
Abstract

[Objective] This paper proposes IMtoc model to maximize influences with the help of overlapping community structure, aiming to quickly identify the most influential nodes in the social networks. [Methods] First, we divided the whole social network into several overlapping communities. Then, we selected the candidates from the nodes with the largest feature vector centrality and the overlapping ones. Finally, we identified the optimal nodes from the candidates with greedy algorithm. [Results] We examined the proposed IMtoc algorithm model with the large social network Git_web_ml dataset. Its running speed was about 91% and 65% faster than the CELF and IMRank algorithms. [Limitations] There is a large overlap between the influential nodes and overlapping nodes. [Conclusions] The IMtoc algorithm could more effectively identify influencing nodes in social networks.

Key wordsSocial Networks    Overlapping Communities    Influence Maximization    Information Dissemination
收稿日期: 2022-02-23      出版日期: 2023-02-03
ZTFLH:  TP393  
  G206  
基金资助:*2021年甘肃省自然科学基金项目(21JR1RA1999);中央高校基本科研业务费项目(31920210083)
通讯作者: 江涛,ORCID:0000-0002-6938-8918     E-mail: xinxiyuanjt@126.com
引用本文:   
王烨桐, 江涛. 通过重叠社区结构识别社交网络中的影响力节点*[J]. 数据分析与知识发现, 2022, 6(12): 80-89.
Wang Yetong, Jiang Tao. Identifying Influential Nodes in Social Networks by Overlapping Community Structure. Data Analysis and Knowledge Discovery, 2022, 6(12): 80-89.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022.0144      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2022/V6/I12/80
Fig.1  重叠社区划分示意
数据集 节点数 连边数 平均度 平均聚类系数
Facebook 4 039 88 234 43.691 0.617
LastFM_Asia 7 624 27 806 7.293 0.285
Git_web_ml 37 700 289 003 15.331 0.193
CA-AstroPh 18 771 198 110 21.107 0.631
Table1  数据集基本信息
Fig.2  参数ε值比较
Fig.3  参数b值比较
Fig.4  影响范围
Fig.5  运行时间
[1] 段金发, 邹乾友, 付松涛. 传播模型分析及应用研究进展[J]. 信息工程大学学报, 2020, 21(2): 172-181.
[1] (Duan Jinfa, Zou Qianyou, Fu Songtao. Research on Propagation Model Analysis and Application[J]. Journal of Information Engineering University, 2020, 21(2): 172-181.)
[2] Bajpai P, Singh A, Shankhwar A K. Performance Analysis of Neighbour Centrality Method Based Rumor Spread Control with Variable Spreading Rate[C]// Proceedings of the 2019 International Conference on Electrical, Electronics and Computer Engineering. IEEE, 2019: 1-6.
[3] Hu X H, Xiang Y, Li Y F, et al. Trident: Efficient and Practical Software Network Monitoring[J]. Tsinghua Science and Technology, 2021, 26(4): 452-463.
doi: 10.26599/TST.2020.9010018
[4] Chang B, Xu T, Liu Q, et al. Study on Information Diffusion Analysis in Social Networks and Its Applications[J]. International Journal of Automation and Computing, 2018, 15(4): 377-401.
doi: 10.1007/s11633-018-1124-0
[5] Domingos P, Richardson M. Mining the Network Value of Customers[C]// Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 2001: 57-66.
[6] Kempe D, Kleinberg J, Tardos É. Maximizing the Spread of Influence Through a Social Network[C]// Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 2003: 137-146.
[7] Leskovec J, Krause A, Guestrin C, et al. Cost-Effective Outbreak Detection in Networks[C]// Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2007: 420-429.
[8] Chen W, Wang Y J, Yang S Y. Efficient Influence Maximization in Social Networks[C]// Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. ACM Press, 2009: 199-208.
[9] Liu W, Li Y, Chen X, et al. Maximum Likelihood-Based Influence Maximization in Social Networks[J]. Applied Intelligence, 2020, 50(10): 3487-3502.
doi: 10.1007/s10489-020-01747-8
[10] Samadi N, Bouyer A. Identifying Influential Spreaders Based on Edge Ratio and Neighborhood Diversity Measures in Complex Networks[J]. Computing, 2019, 101(8): 1147-1175.
doi: 10.1007/s00607-018-0659-9
[11] Ahajjam S, Badir H. Identification of Influential Spreaders in Complex Networks Using HybridRank Algorithm[J]. Scientific Reports, 2018, 8: 11932.
doi: 10.1038/s41598-018-30310-2 pmid: 30093716
[12] Li X H, Guo J Y, Gao C, et al. A Hybrid Strategy for Network Immunization[J]. Chaos, Solitons & Fractals, 2018, 106: 214-219.
doi: 10.1016/j.chaos.2017.11.029
[13] Xin Y C, Gao C, Wang Z, et al. Discerning Influential Spreaders in Complex Networks by Accounting the Spreading Heterogeneity of the Nodes[J]. IEEE Access, 2019, 7: 92070-92078.
doi: 10.1109/ACCESS.2019.2927775
[14] 曹玖新, 董丹, 徐顺, 等. 一种基于k-核的社会网络影响最大化算法[J]. 计算机学报, 2015, 38(2): 238-248.
[14] (Cao Jiuxin, Dong Dan, Xu Shun, et al. A k-Core Based Algorithm for Influence Maximization in Social Networks[J]. Chinese Journal of Computers, 2015, 38(2): 238-248.)
[15] Cheng S Q, Shen H W, Huang J M, et al. IMRank: Influence Maximization via Finding Self-Consistent Ranking[C]// Proceedings of the 37th International ACM SIGIR Conference on Research & Development in Information Retrieval. ACM, 2014: 475-484.
[16] Borgs C, Brautbar M, Chayes J, et al. Maximizing Social Influence in Nearly Optimal Time[C]//Proceedings of the 25th Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 2014: 946-957.
[17] Halappanavar M, Sathanur A V, Nandi A K. Accelerating the Mining of Influential Nodes in Complex Networks Through Community Detection[C]// Proceedings of the 2016 ACM International Conference on Computing Frontiers. ACM, 2016: 64-71.
[18] Girvan M, Newman M E J. Community Structure in Social and Biological Networks[J]. PNAS, 2002, 99(12): 7821-7826.
doi: 10.1073/pnas.122653799 pmid: 12060727
[19] Newman M E J, Girvan M. Finding and Evaluating Community Structure in Networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(2): 026113.
doi: 10.1103/PhysRevE.69.026113
[20] Newman M E J. Modularity and Community Structure in Networks[J]. PNAS, 2006, 103(23): 8577-8582.
doi: 10.1073/pnas.0601602103 pmid: 16723398
[21] Newman M E J. Fast Algorithm for Detecting Community Structure in Networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2004, 69(6): 066133.
doi: 10.1103/PhysRevE.69.066133
[22] Blondel V D, Guillaume J L, Lambiotte R, et al. Fast Unfolding of Communities in Large Networks[J]. Journal of Statistical Mechanics: Theory and Experiment, 2008(10): 10008.
[23] Raghavan U N, Albert R, Kumara S. Near Linear Time Algorithm to Detect Community Structures in Large-Scale Networks[J]. Physical Review E, Statistical, Nonlinear, and Soft Matter Physics, 2007, 76(3): 036106.
doi: 10.1103/PhysRevE.76.036106
[24] Huang L, Liu F Y, Zhang Y. Overlapping Community Discovery for Identifying Key Research Themes[J]. IEEE Transactions on Engineering Management, 2021, 68(5): 1321-1333.
doi: 10.1109/TEM.2020.2972639
[25] Gupta S, Kumar P. An Overlapping Community Detection Algorithm Based on Rough Clustering of Links[J]. Data & Knowledge Engineering, 2020, 125: 101777.
doi: 10.1016/j.datak.2019.101777
[26] Coscia M, Rossetti G, Giannotti F, et al. Uncovering Hierarchical and Overlapping Communities with a Local-First Approach[J]. ACM Transactions on Knowledge Discovery from Data, 2014, 9(1): 1-27.
[27] Banerjee S, Jenamani M, Pratihar D K. ComBIM: A Community-Based Solution Approach for the Budgeted Influence Maximization Problem[J]. Expert Systems with Applications, 2019, 125: 1-13.
doi: 10.1016/j.eswa.2019.01.070
[28] Atif Y, Al-Falahi K, Wangchuk T, et al. A Fuzzy Logic Approach to Influence Maximization in Social Networks[J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11(6): 2435-2451.
doi: 10.1007/s12652-019-01286-2
[29] Ye F H, Liu J H, Chen C, et al. Identifying Influential Individuals on Large-Scale Social Networks: A Community Based Approach[J]. IEEE Access, 2018, 6: 47240-47257.
doi: 10.1109/ACCESS.2018.2866981
[30] Bonacich P. Factoring and Weighting Approaches to Status Scores and Clique Identification[J]. The Journal of Mathematical Sociology, 1972, 2(1): 113-120.
doi: 10.1080/0022250X.1972.9989806
[31] Bonacich P. Some Unique Properties of Eigenvector Centrality[J]. Social Networks, 2007, 29(4): 555-564.
doi: 10.1016/j.socnet.2007.04.002
[32] 吴信东, 李毅, 李磊. 在线社交网络影响力分析[J]. 计算机学报, 2014, 37(4): 735-752.
[32] (Wu Xindong, Li Yi, Li Lei. Influence Analysis of Online Social Networks[J]. Chinese Journal of Computers, 2014, 37(4): 735-752.)
[1] 郭蕾, 刘文菊, 王赜, 任悦强. 融合谱聚类和多因素影响的兴趣点推荐方法*[J]. 数据分析与知识发现, 2022, 6(5): 77-88.
[2] 孙羽, 裘江南. 基于网络分析和文本挖掘的意见领袖影响力研究*[J]. 数据分析与知识发现, 2022, 6(1): 69-79.
[3] 曹广, 沈丽宁. 基于SEIR模型的网络医疗众筹传播建模与仿真分析*[J]. 数据分析与知识发现, 2022, 6(1): 80-90.
[4] 王晰巍,贾若男,韦雅楠,张柳. 多维度社交网络舆情用户群体聚类分析方法研究*[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[5] 马莹雪,赵吉昌. 自然灾害期间微博平台的舆情特征及演变*——以台风和暴雨数据为例[J]. 数据分析与知识发现, 2021, 5(6): 66-79.
[6] 张翼鹏,马敬东. 突发公共卫生事件误导信息受众情感分析及传播特征研究*[J]. 数据分析与知识发现, 2020, 4(12): 45-54.
[7] 温彦,马立健,曾庆田,郭文艳. 基于地理信息偏好修正和社交关系偏好隐式分析的POI推荐 *[J]. 数据分析与知识发现, 2019, 3(8): 30-39.
[8] 仇丽青,贾玮,范鑫. 基于重叠社区的影响力最大化算法 *[J]. 数据分析与知识发现, 2019, 3(7): 94-102.
[9] 伍杰华, 沈静, 周蓓. 基于迁移成分分析的多层社交网络链接分类*[J]. 数据分析与知识发现, 2018, 2(9): 88-99.
[10] 钱晓东, 李敏. 基于复杂网络重叠社区的电子商务用户复合类型识别*[J]. 数据分析与知识发现, 2018, 2(6): 79-91.
[11] 郭博, 赵隽瑞, 孙宇. 社会化问答社区用户行为统计特性及其动力学分析: 以知乎网为例[J]. 数据分析与知识发现, 2018, 2(4): 48-58.
[12] 王飞飞, 张生太. 移动社交网络微信用户信息发布行为统计特征分析*[J]. 数据分析与知识发现, 2018, 2(4): 99-109.
[13] 张凌, 罗曼曼, 朱礼军. 基于社交网络的信息扩散分析研究*[J]. 数据分析与知识发现, 2018, 2(2): 46-57.
[14] 李纲, 王晓, 郭洋. 基于成员合作共现的微信群内部关系研究*[J]. 数据分析与知识发现, 2018, 2(11): 54-63.
[15] 王晰巍, 张柳, 李师萌, 王楠阿雪. 新媒体环境下社会公益网络舆情传播研究* ——以新浪微博“画出生命线”话题为例[J]. 数据分析与知识发现, 2017, 1(6): 93-101.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn