Please wait a minute...
Advanced Search
数据分析与知识发现  2023, Vol. 7 Issue (12): 52-63     https://doi.org/10.11925/infotech.2096-3467.2022.1133
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于知识重组和变异的技术新颖性评估——以数字医疗技术为例*
杨思洛1,2,江曼1,2(),高强3
1武汉大学信息管理学院 武汉 430072
2武汉大学中国科学评价研究中心 武汉 430072
3山东政法学院网络安全学院 济南 250014
Technology Novelty Assessment Based on Knowledge Reorganization and Variation: Case Study of Digital Medicine
Yang Siluo1,2,Jiang Man1,2(),Gao Qiang3
1School of Information Management, Wuhan University, Wuhan 430072, China
2Research Center for Chinese Science Evaluation, Wuhan University, Wuhan 430072, China
3College of Cyber Security, Shandong University of Political Science and Law, Jinan 250014, China
全文: PDF (1084 KB)   HTML ( 10
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】针对技术新颖性评估中使用替代指标而忽略新颖性内涵的问题,从技术新颖性的来源和形成机理出发,构建一种基于知识重组和变异的技术新颖性评估方法。【方法】从微观层面剖析技术新颖性来源,厘清“知识单元-知识重组与变异-技术新颖性”的内在逻辑关系;围绕知识重组与变异两条主线,从知识来源多样度、重组方式新颖度和知识变异突破度三个层面构建技术新颖性评估指标;进一步地以数字医疗技术为例验证该方法的可行性与有效性。【结果】识别出数字医疗领域新颖性较高的技术及其新颖性分值;本文方法比常用的被引量方法、余弦相似度方法、知识多样性方法在查全率上分别提升了约23.19、5.24、9.69个百分点;在相同数据集中可以正确识别到更多的高新颖性技术。【局限】未对不同知识单元分类体系下的知识单元划分进行探讨。【结论】知识重组和变异是技术新颖性来源的两大途径,本文提出的技术新颖性评估方法可以更好地识别出新颖度较高的技术。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨思洛
江曼
高强
关键词 技术新颖性知识重组知识变异数字医疗    
Abstract

[Objective] This paper proposes a technical novelty assessment method based on knowledge reorganization and variation as well as the source and formation mechanism of technological novelty. It addresses the problem of using substitute indicators and ignoring the connotation of novelty in technical novelty assessment. [Methods] First, we analyzed the sources of technological novelty at the micro level, which helps us clarify the internal relationship from knowledge units to knowledge reorganization and from variation to technological novelty. Then, we constructed the technical novelty evaluation indexes at three levels: knowledge source diversity, reorganization novelty, and knowledge variation breakthrough degree around two main lines of knowledge reorganization and variation. Finally, we verified the feasibility and effectiveness of the method with digital medical technology. [Results] We identified the technologies with high novelty and their scores. The recall values of this proposed method were about 23.19%, 5.24%, and 9.69% higher than the commonly used citation, cosine similarity, and knowledge diversity methods. [Limitations] More research is needed to explore categorizing knowledge units under different classification schemes. [Conclusions] Knowledge reorganization and variation are two leading reasons for technology innovation. The proposed method can effectively identify technologies of high novelty.

Key wordsTechnological Novelty    Knowledge Reorganization    Knowledge Variation    Digital Medical
收稿日期: 2022-10-28      出版日期: 2023-03-22
ZTFLH:  F273  
  G305  
基金资助:*ISTIC-CLARIVATE ANALYTICS科学计量学联合实验室开放基金项目(IT2160)
通讯作者: 江曼,ORCID:0000-0003-3721-1226,E-mail:jiangman@whu.edu.cn。   
引用本文:   
杨思洛, 江曼, 高强. 基于知识重组和变异的技术新颖性评估——以数字医疗技术为例*[J]. 数据分析与知识发现, 2023, 7(12): 52-63.
Yang Siluo, Jiang Man, Gao Qiang. Technology Novelty Assessment Based on Knowledge Reorganization and Variation: Case Study of Digital Medicine. Data Analysis and Knowledge Discovery, 2023, 7(12): 52-63.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022.1133      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2023/V7/I12/52
Fig.1  “知识单元-知识重组与变异-技术新颖性”的逻辑框架
Fig.2  专利技术的知识单元划分流程
Fig.3  技术新颖性的评估示例
Fig.4  技术新颖性评估的流程框架
Fig.5  数字医疗专利家族数量的增长趋势
ID 专利号 后引专利(前5件) 后引专利知识单元 知识来源多样度
1 US2010004023 US20050202844;US20080142719;US20080237472;US20080237473;US20080237476 …… 3,24,27,10,13,2,6,7 8
2 US2010002919 US495283;US4958283;US5715823;US20060083442;US20080177808 …… 3,4,13,6,10,12,2 7
3 US2010010320 US343683;US5014875;US5187641;US5337992;US5537289 …… 12,2,6,13,31,3,4,7,33,23,25,34,30,5,10,11,15,1,14,24,35 21
Table 1  数字医疗专利知识来源多样度
ID 专利号 知识单元 知识依赖度 重组方式新颖度
144 CN101826093 6 5.214 3 0.742 4
145 CN101826095 2,6 2.813 2 1.376 0
146 CN101827253 2,6 2.912 6 1.329 1
148 CN101822533 3,13 4.253 2 0.910 2
149 CN101826253 3,4,13 2.963 1 1.306 4
Table 2  数字医疗专利重组方式新颖度
ID 专利号 后引专利知识单元 知识单元 知识单元差异 知识变异突破度
164 US2010239065 2,8,9,24,27,13 10,13 10 0.5
165 WO2010108018 12,13,34,31,6,3,27,4,10,16,7 12,13 / 0
166 US2010244574 1,6,24 1,13,9 13,9 0.666 7
167 US2010246981 13,6,4,2,7,12,3 3,13,6,7 / 0
168 WO2010108287 13 13,6,7 6,7 0.666 7
Table 3  数字医疗专利知识变异突破度
专利号 评分 专利号 评分 专利号 评分
WO2020080396 22.84 KR2021137260 13.40 US2020128321 11.77
JP2021041036 20.19 US2018322253 13.28 US2015360054 11.40
WO2021158029 16.78 GB2574040 13.10 WO2021125508 11.38
WO2020123007 16.04 WO2017122639 12.33 WO2016023026 11.36
WO2021127620 15.53 CN214890060 12.30 CN212836895 11.31
CN108665973 15.35 CN113176754 12.25 CN213987250 11.15
WO2019234711 14.82 CN113616588 12.22 US2017327582 11.13
WO2017077833 14.78 CN112160622 12.05 US2016147303 11.03
WO2019232621 14.70 US2020027000 12.02 CN111561193 10.97
EA37472 13.87 JP2020005865 11.98 US9051043 10.88
Table 4  数字医疗专利新颖性综合评分
国家 高新颖性专利数量 代表专利权人(数量) 涉及技术主题
韩国 13 SMSU(11) 可穿戴设备;图片读取;电子装置
美国 13 GOOG(1) 可穿戴设备;远程医疗诊断与治疗
中国 11 GUAN(2) 医疗机器人;远程监控;远程诊断与治疗
日本 7 NIOD(1) 远程诊断和治疗系统;图像处理与读取;信息处理系统
英国 3 CML(2) 图像处理与读取
加拿大 2 UYAL(1) 医疗设备材料
俄罗斯 1 BIOA(1) 远程医疗
Table 5  前50件高新颖性专利解读
方法 tp tp+fp tp+fn P R
被引量方法 2 679 3 857 8 412 69.45% 31.84%
余弦相似度方法 4 188 7 522 8 412 55.68% 49.79%
知识多样性方法 3 814 6 987 8 412 54.59% 45.34%
本文方法 4 629 7 524 8 412 61.52% 55.03%
Table 6  有效性验证结果对比
[1] 王康, 陈悦, 宋超, 等. 颠覆性技术:概念辨析与特征分析[J]. 科学学研究, 2022, 40(11): 1937-1946.
[1] (Wang Kang, Chen Yue, Song Chao, et al. Disruptive Technology: Concept Discrimination and Characteristics Analysis[J]. Studies in Science of Science, 2022, 40(11): 1937-1946.)
[2] 邱悦文. 离群专利与论文视角下新兴技术主题识别研究[J]. 情报工程, 2021, 7(3): 81-93.
[2] (Qiu Yuewen. Research on Emerging Technology Topic Identification Based on Outlier Patent and Paper[J]. Technology Intelligence Engineering, 2021, 7(3): 81-93.)
[3] 白如江, 冷伏海, 廖君华. 科学研究前沿探测主要方法比较与发展趋势研究[J]. 情报理论与实践, 2017, 40(5): 33-38.
[3] (Bai Rujiang, Leng Fuhai, Liao Junhua. Research on the Comparison of the Main Methods and Development Trends of Frontier Exploration in Scientific Research[J]. Information Studies: Theory & Application, 2017, 40(5): 33-38.)
[4] Porter A L, Garner J, Carley S F, et al. Emergence Scoring to Identify Frontier R&D Topics and Key Players[J]. Technological Forecasting and Social Change, 2019, 146: 628-643.
doi: 10.1016/j.techfore.2018.04.016
[5] 徐路路, 靳杨. 基于FSD模型的政府资助项目新兴主题探测与分析[J]. 科学学与科学技术管理, 2019, 40(2): 40-54.
[5] (Xu Lulu, Jin Yang. Emerging Topics Detection and Analysis of Government Funded Projects Based on FSD Model[J]. Science of Science and Management of S.&T., 2019, 40(2): 40-54.)
[6] Costanzo B P, Sánchez L E. Innovation in Impact Assessment Theory and Practice: How is It Captured in the Literature?[J]. Environmental Impact Assessment Review, 2019, 79: Article No.106289.
[7] Wang Z Y, Wang K Y, Liu J Y, et al. Measuring the Innovation of Method Knowledge Elements in Scientific Literature[J]. Scientometrics, 2022, 127(5): 2803-2827.
doi: 10.1007/s11192-022-04350-5
[8] 张金柱, 王秋月, 仇蒙蒙. 颠覆性技术识别研究进展综述[J]. 数据分析与知识发现, 2022, 6(7): 12-31.
[8] (Zhang Jinzhu, Wang Qiuyue, Qiu Mengmeng. Review of Studies Identifying Disruptive Technologies[J]. Data Analysis and Knowledge Discovery, 2022, 6(7): 12-31.)
[9] Hofstra B, Kulkarni V V, Munoz-Najar Galvez S, et al. The Diversity-Innovation Paradox in Science[J]. PNAS, 2020, 117(17): 9284-9291.
doi: 10.1073/pnas.1915378117 pmid: 32291335
[10] 胡泽文, 周西姬, 任萍. 基于扎根理论的高价值专利评估与识别研究综述[J]. 情报科学, 2022, 40(2): 183-192.
doi: 10.1016/0020-0255(86)90057-5
[10] (Hu Zewen, Zhou Xiji, Ren Ping. Review on Evaluation and Identification of High-Value Patent Based on Grounded Theory[J]. Information Science, 2022, 40(2): 183-192.)
doi: 10.1016/0020-0255(86)90057-5
[11] 宋凯, 冉从敬. 基于指标计算与内容分析的高校专利价值评估方法研究[J]. 情报理论与实践, 2023, 46(2): 136-144.
[11] (Song Kai, Ran Congjing. Research on Evaluation Method of University Patent Value Based on Index Calculation and Content Analysis[J]. Information Studies: Theory & Application, 2023, 46(2): 136-144.)
[12] Becker M C, Knudsen T, March J G. Schumpeter, Winter, and the Sources of Novelty[J]. Industrial and Corporate Change, 2006, 15(2): 353-371.
doi: 10.1093/icc/dtl003
[13] Zhang Y, Tsai F S. Chinese Novelty Mining[C]// Proceedings of the 2009 Conference on Empirical Methods in Natural Language Processing. ACM, 2009: 1561-1570.
[14] 任海英, 邵文, 李欣. 基于专利内容新颖性和常规性的突破性发明影响因素和研发策略分析[J]. 情报杂志, 2019, 38(2): 56-63.
[14] (Ren Haiying, Shao Wen, Li Xin. Influencing Factors of and R&D Strategy for Breakthrough Inventions Based on Novelty and Conventionality of Contents of Patents[J]. Journal of Intelligence, 2019, 38(2): 56-63.)
[15] Yang J Q, Lu W, Hu J M, et al. A Novel Emerging Topic Detection Method: A Knowledge Ecology Perspective[J]. Information Processing & Management, 2022, 59(2): Article No.102843.
[16] 杨建林, 钱玲飞. 基于关键词对逆文档频率的主题新颖度度量方法[J]. 情报理论与实践, 2013, 36(3): 99-102.
[16] (Yang Jianlin, Qian Lingfei. Theme Novelty Measurement Based on Inverse Document Frequency of Keyword Pairs[J]. Information Studies: Theory & Application, 2013, 36(3): 99-102.)
[17] Chen C M, Chen Y, Horowitz M, et al. Towards an Explanatory and Computational Theory of Scientific Discovery[J]. Journal of Informetrics, 2009, 3(3): 191-209.
doi: 10.1016/j.joi.2009.03.004
[18] 吴菲菲, 栾静静, 黄鲁成, 等. 基于新颖性和领域交叉性的知识前沿性专利识别——以老年福祉技术为例[J]. 情报杂志, 2016, 35(5): 85-90.
[18] (Wu Feifei, Luan Jingjing, Huang Lucheng, et al. Identification of Knowledge Frontier Patents Based on Novelty and Interdisciplinarity: Gerontechnology as an Example[J]. Journal of Intelligence, 2016, 35(5): 85-90.)
[19] Lee C Y, Kang B, Shin J. Novelty-Focused Patent Mapping for Technology Opportunity Analysis[J]. Technological Forecasting and Social Change, 2015, 90: 355-365.
doi: 10.1016/j.techfore.2014.05.010
[20] 宋歌. 科研成果创新力指标S指数的设计与实证[J]. 图书情报工作, 2016, 60(5): 77-86.
doi: 10.13266/j.issn.0252-3116.2016.05.012
[20] (Song Ge. Study on Innovation Power Evaluation Index of Scientific Research Achievements: Design and Demonstration of S Index[J]. Library and Information Service, 2016, 60(5): 77-86.)
doi: 10.13266/j.issn.0252-3116.2016.05.012
[21] Keijl S, Gilsing V A, Knoben J, et al. The Two Faces of Inventions: The Relationship Between Recombination and Impact in Pharmaceutical Biotechnology[J]. Research Policy, 2016, 45(5): 1061-1074.
doi: 10.1016/j.respol.2016.02.008
[22] 马荣康, 王艺棠. 知识组合多样性、新颖性与突破性发明形成[J]. 科学学研究, 2020, 38(2): 313-322.
[22] (Ma Rongkang, Wang Yitang. Diversity and Novelty of Knowledge Combination and the Formation of Breakthrough Inventions[J]. Studies in Science of Science, 2020, 38(2): 313-322.)
[23] 王萍萍, 王毅. 技术新颖性从何而来? ——基于纳米技术专利的分析[J]. 管理工程学报, 2020, 34(6): 79-89.
[23] (Wang Pingping, Wang Yi. Identifying the Sources of Technological Novelty: Empirical Analysis Based on Nanotechnology Patents[J]. Journal of Industrial Engineering and Engineering Management, 2020, 34(6): 79-89.)
[24] 张克群, 张文, 汪程. 知识组合新颖性、网络特征与核心发明人关系研究[J]. 情报杂志, 2022, 41(1): 185-191.
[24] (Zhang Kequn, Zhang Wen, Wang Cheng. The Relationship Between Novelty of Knowledge Combination, Network Characteristics and Key Inventors[J]. Journal of Intelligence, 2022, 41(1): 185-191.)
[25] Strumsky D, Lobo J. Identifying the Sources of Technological Novelty in the Process of Invention[J]. Research Policy, 2015, 44(8): 1445-1461.
doi: 10.1016/j.respol.2015.05.008
[26] 张振刚, 罗泰晔. 基于知识组合理论的技术机会发现[J]. 科研管理, 2020, 41(8): 220-228.
[26] (Zhang Zhengang, Luo Taiye. Technology Opportunity Discovery Based on Knowledge Combination Theory[J]. Science Research Management, 2020, 41(8): 220-228.)
[27] 宋超, 陈悦, 王康, 等. 知识单元视角下“零引文专利”技术新颖性比较分析[J]. 情报杂志, 2022, 41(8): 62-68.
[27] (Song Chao, Chen Yue, Wang Kang, et al. Comparative Analysis of Technological Novelty of “Zero-Reference Patents” from the Perspective of Knowledge Units[J]. Journal of Intelligence, 2022, 41(8): 62-68.)
[28] 李乾瑞, 郭俊芳, 黄颖, 等. 基于突变-融合视角的颠覆性技术主题演化研究[J]. 科学学研究, 2021, 39(12): 2129-2139.
[28] (Li Qianrui, Guo Junfang, Huang Ying, et al. Topic Evolution Research of Disruptive Technology Based on Mutation and Fusion Perspective[J]. Studies in Science of Science, 2021, 39(12): 2129-2139.)
[29] 王康, 陈悦. 基于异质性专利的颠覆性技术早期识别研究[J]. 科学学研究, 2023, 41(8): 1364-1375.
[29] (Wang Kang, Chen Yue. Research on Early Identification of Disruptive Technologies Based on Heterogeneous Patents[J]. Studies in Science of Science, 2023, 41(8): 1364-1375.)
[30] 张金柱, 张晓林. 利用引用科学知识突变识别突破性创新[J]. 情报学报, 2014, 33(3): 259-266.
[30] (Zhang Jinzhu, Zhang Xiaolin. Identification of Radical Innovation Based on Mutation of Cited Scientific Knowledge[J]. Journal of the China Society for Scientific and Technical Information, 2014, 33(3): 259-266.)
[31] Youn H, Strumsky D, Bettencourt L M A, et al. Invention as a Combinatorial Process: Evidence from US Patents[J]. Journal of the Royal Society, Interface, 2015, 12(106): Article No.20150272.
[32] Savino T, Messeni Petruzzelli A, Albino V. Search and Recombination Process to Innovate: A Review of the Empirical Evidence and a Research Agenda[J]. International Journal of Management Reviews, 2017, 19(1): 54-75.
doi: 10.1111/ijmr.2017.19.issue-1
[33] Breitzman A, Thomas P. The Emerging Clusters Model: A Tool for Identifying Emerging Technologies Across Multiple Patent Systems[J]. Research Policy, 2015, 44(1): 195-205.
doi: 10.1016/j.respol.2014.06.006
[34] Van den Bergh J C J M. Optimal Diversity: Increasing Returns Versus Recombinant Innovation[J]. Journal of Economic Behavior & Organization, 2008, 68(3-4): 565-580.
doi: 10.1016/j.jebo.2008.09.003
[35] Kaplan S, Vakili K. The Double-Edged Sword of Recombination in Breakthrough Innovation[J]. Strategic Management Journal, 2015, 36(10): 1435-1457.
doi: 10.1002/smj.2294
[36] 江曼, 孙明汉, 余翔, 等. 协同创新视角下技术机会识别模型——以中国智能机器人为例[J]. 情报杂志, 2020, 39(7): 42-48.
[36] (Jiang Man, Sun Minghan, Yu Xiang, et al. Technology Opportunity Identification Model from the Perspective of Synergy Innovation: A Case Study of Chinese Intelligent Robots[J]. Journal of Intelligence, 2020, 39(7): 42-48.)
[37] 陈虹枢, 宋亚慧, 金茜茜, 等. 动态主题网络视角下的突破性创新主题识别: 以区块链领域为例[J]. 图书情报工作, 2022, 66(10): 45-58.
doi: 10.13266/j.issn.0252-3116.2022.10.004
[37] (Chen Hongshu, Song Yahui, Jin Qianqian, et al. Radical Innovative Topic Identification from a Perspective of Dynamic Topic Network: Taking the Field of Blockchain as an Example[J]. Library and Information Service, 2022, 66(10): 45-58.)
doi: 10.13266/j.issn.0252-3116.2022.10.004
[38] 李政, 罗晖, 李正风, 等. 基于突变理论的科技评价方法初探[J]. 科研管理, 2017, 38(S1): 193-200.
[38] (Li Zheng, Luo Hui, Li Zhengfeng, et al. Primary Study on Evaluation Method of Science and Technology Based on Catastrophe Theory[J]. Science Research Management, 2017, 38(S1): 193-200.)
[39] Wang Z N, Porter A L, Wang X F, et al. An Approach to Identify Emergent Topics of Technological Convergence: A Case Study for 3D Printing[J]. Technological Forecasting and Social Change, 2019, 146: 723-732.
doi: 10.1016/j.techfore.2018.12.015
[40] Fleming L, Sorenson O. Technology as a Complex Adaptive System: Evidence from Patent Data[J]. Research Policy, 2001, 30(7): 1019-1039.
doi: 10.1016/S0048-7333(00)00135-9
[41] Kosmulski M. New Seniority-independent Hirsch-type Index[J]. Journal of Informetrics, 2009, 3(4): 341-347.
doi: 10.1016/j.joi.2009.05.003
[42] 从电子大亨到医疗“新贵”,全面解读三星集团的医疗创新逻辑[EB/OL].[2022-10-08]. https://new.qq.com/rain/a/20220329A034PX00.
[42] (From Electronic Giant to Medical “New Noble”: A Comprehensive Analysis of Samsung Group’s Healthcare Innovation Logic[EB/OL]. [2022-10-08]. https://new.qq.com/rain/a/20220329A034PX00.)
[43] Ahuja G, Morris Lampert C. Entrepreneurship in the Large Corporation: A Longitudinal Study of How Established Firms Create Breakthrough Inventions[J]. Strategic Management Journal, 2001, 22(6-7): 521-543.
doi: 10.1002/smj.v22:6/7
[44] Dahlin K B, Behrens D M. When is an Invention Really Radical?[J]. Research Policy, 2005, 34(5): 717-737.
doi: 10.1016/j.respol.2005.03.009
No related articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn