Please wait a minute...
Advanced Search
数据分析与知识发现  2023, Vol. 7 Issue (12): 64-74     https://doi.org/10.11925/infotech.2096-3467.2022.0549
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于多语义信息融合的事件检测模型*
魏建香1(),陆谦2,韩普1,黄卫东1,3
1南京邮电大学管理学院 南京 210003
2南京邮电大学物联网学院 南京 210003
3江苏高校哲学社会科学重点研究基地—信息产业融合创新与应急管理研究中心 南京 210003
Event Detection Model Based on Semantic Information Fusion
Wei Jianxiang1(),Lu Qian2,Han Pu1,Huang Weidong1,3
1School of Management, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
3Key Research Base of Philosophy and Social Sciences in Jiangsu-Information Industry Integration Innovation and Emergency Management Research Center, Nanjing 210003, China
全文: PDF (1702 KB)   HTML ( 11
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】通过融合多类语义信息,提高事件检测任务准确性。【方法】首先,利用Bi-LSTM模型编码非关系类语义信息;其次,基于关系类语义信息生成关系图,利用多尺度卷积神经网络捕获邻接矩阵蕴含的空间信息并与词向量进行融合;最后,构建Gated-GCN模型动态聚合并更新相邻词向量间的关系类语义信息,增强词向量的表征能力。【结果】基于ACE05基准数据集,与现有主流事件检测模型进行对比实验,所提模型的F1值达到76.3%,相较于最优的基准模型提升1.2个百分点。【局限】研究基于基准数据集,需要在一般的数据集上进行模型验证。【结论】融合多类语义信息能够有效提升事件检测性能。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
魏建香
陆谦
韩普
黄卫东
关键词 事件检测信息抽取多语义融合门控线性单元图卷积神经网络    
Abstract

[Objective] This paper aims to improve the accuracy of event detection tasks by fusing semantic information. [Methods] First, we stored the non-relational semantic information with an initial word vector and encoded them with the Bi-LSTM model to aggregate their contexts. Then, we developed a relation graph based on relational semantic information. Third, we used a multi-scale convolutional neural network to capture the spatial information from the adjacency matrix and fuse it with the word vector. Finally, we built a Gate-GCN model to aggregate relational semantic information between adjacent word vectors to enhance their representation ability. [Results] We examined the new model with the ACE05 benchmark dataset. Our method’s F1 value reached 76.3%, which was 1.2% higher than the existing mainstream models. [Limitations] The proposed model needs to be validated with general datasets. [Conclusions] Fusion of multiple types of semantic information can effectively improve the event detection performance.

Key wordsEvent Detection    Information Extraction    Multi-Semantic Fusion    Gated Linear Unit    Graph Convolutional Neural Network
收稿日期: 2022-05-30      出版日期: 2023-03-30
ZTFLH:  TP391  
  G35  
基金资助:*国家社会科学基金项目(17CTQ022);国家自然科学基金项目(7227011403);江苏高校哲学社会科学研究重大项目(2020SJZDA102)
通讯作者: 魏建香,ORCID:0000-0001-9052-9212,E-mail:jxwei@njupt.edu.cn。   
引用本文:   
魏建香, 陆谦, 韩普, 黄卫东. 基于多语义信息融合的事件检测模型*[J]. 数据分析与知识发现, 2023, 7(12): 64-74.
Wei Jianxiang, Lu Qian, Han Pu, Huang Weidong. Event Detection Model Based on Semantic Information Fusion. Data Analysis and Knowledge Discovery, 2023, 7(12): 64-74.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022.0549      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2023/V7/I12/64
S1:North Korea’s military may have fired a loser at a U.S helicopter.
Words
North Korea’s military
U.S
Entity types
PER:Group
GPE:Nation
Words
North Korea’s military
Loser
helicopter
Event arguments
Attacker
Instrument
Target
Trigger:fired
Event type:Attack
Table 1  包含多类语义信息的事件检测例句
Fig.1  基于多语义信息融合的事件检测模型结构
Fig.2  关系图与邻接矩阵
超参数名 参数值 超参数名 参数值
初始词向量维度 100 批量大小 30
事件要素向量维度 100 最大句子长度 50
实体类型向量维度 25 Bi-LSTM层数 1
关系类型向量维度 50 GCN层数 2
Bi-LSTM隐藏层维度 100 学习率 0.1
GCN隐藏层维度 200 偏置项参数α 5
Table 2  模型的超参数设置
网络层 FLOPs Params
CNN 9.02MMac 22.55k
Bi-LSTM 6.07MMac 301.6k
Gated-GCN 11.6MMac 52.75k
Table 3  模型复杂度分析
模型 P/% R/% F1/%
Cross-entity 72.9 64.3 68.3
MaxEntropy 74.5 59.1 65.9
PSL 75.3 64.4 69.4
DMCNN 75.6 63.6 69.1
JRNN 66.0 73.0 69.3
ANN 78.0 66.3 71.7
GCN-ED 77.9 68.8 73.1
JMEE 76.3 71.3 73.7
SELF 71.3 74.7 73.0
BGCN
AD-DMBERT
77.5
77.9
72.4
72.5
74.2
75.1
本文 76.0 76.7 76.3
Table 4  模型性能对比
特征组合 P/% R/% F1/%
词向量表示: [ w ]
关系表示: [ d e p _ r ]
69.7 70.6 70.1
词向量表示: [ w ; ? s ]
关系表示: [ d e p _ r ]
71.1 74.1 72.5
词向量表示: [ w ; ? s ; ? a ]
关系表示: [ d e p _ r ]
76.6 73.5 75.0
Table 5  不同特征组合的性能比较
模型 P/% R/% F1/%
Bi-LSTM+GCN 76.6 73.5 75.0
CNN+Bi-LSTM+GCN 77.0 74.3 75.6
Table 6  融合空间信息的模型性能
模型 P/% R/% F1/%
CNN+Bi-LSTM+GCN 77.0 74.3 75.6
CNN+Bi-LSTM+Gated-GCN 76.0 76.7 76.3
Table 7  使用Gated-GCN的模型性能
Fig.3  基于8个大类分类的混淆矩阵
Fig.4  基于34个小类分类的混淆矩阵(部分)
Fig.5  基准模型的测试结果混淆矩阵
Fig.6  本文模型的测试结果混淆矩阵
[1] Doddington G, Mitchell A, Przybocki M. The Automatic Content Extraction (ACE) Program—Tasks, Data, and Evaluation[C]// Proceedings of the 4th International Conference on Language Resources and Evaluation. 2004: 837-840.
[2] Li L, Jin L, Zhang Z Q, et al. Graph Convolution over Multiple Latent Context-Aware Graph Structures for Event Detection[J]. IEEE Access, 2020, 8: 171435-171446.
doi: 10.1109/Access.6287639
[3] Dutta S, Ma L, Saha T K, et al. GTN-ED: Event Detection Using Graph Transformer Networks[C]// Proceedings of the 15th Workshop on Graph-Based Methods for Natural Language Processing. 2021: 132-137.
[4] 万齐智, 万常选, 胡蓉, 等. 基于句法语义依存分析的中文金融事件抽取[J]. 计算机学报, 2021, 44 (3): 508-530.
[4] (Wan Qizhi, Wan Changxuan, Hu Rong, et al. Chinese Financial Event Extraction Base on Syntactic and Semantic Dependency Parsing[J]. Chinese Journal of Computers, 2021, 44 (3): 508-530.)
[5] 陈佳丽, 洪宇, 王捷, 等. 利用门控机制融合依存与语义信息的事件检测方法[J]. 中文信息学报, 2020, 34(8): 51-60.
[5] (Chen Jiali, Hong Yu, Wang Jie, et al. Combination of Dependency and Semantic Information via Gated Mechanism for Event Detection[J]. Journal of Chinese Information Processing, 2020, 34(8): 51-60.)
[6] Cui Z C, Chen W L, Chen Y X. Multi-Scale Convolutional Neural Networks for Time Series Classification[OL]. arXiv Preprint, arXiv: 1603.06995.
[7] Kipf T N, Welling M. Semi-Supervised Classification with Graph Convolutional Networks[OL]. arXiv Preprint, arXiv: 1609.02907.
[8] Dauphin Y N, Fan A, Auli M, et al. Language Modeling with Gated Convolutional Networks[C]// Proceedings of the 34th International Conference on Machine Learning - Volume 70. 2017: 933-941.
[9] Grishman R, Westbrook D, Meyers A. NYU’s English ACE 2005 System Description[C]// Proceedings of ACE 2005 Evaluation Workshop. 2005.
[10] Ji H, Grishman R. Refining Event Extraction Through Cross-Document Inference[C]// Proceedings of ACL-08:HLT. 2008: 254-262.
[11] Liao S S, Grishman R. Using Document Level Cross-Event Inference to Improve Event Extraction[C]// Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics. 2010: 789-797.
[12] Hong Y, Zhang J F, Ma B, et al. Using Cross-Entity Inference to Improve Event Extraction[C]// Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1. 2011: 1127-1136.
[13] Nguyen T H, Grishman R. Event Detection and Domain Adaptation with Convolutional Neural Networks[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 2:Short Papers). 2015: 365-371.
[14] Chen Y B, Xu L H, Liu K, et al. Event Extraction via Dynamic Multi-Pooling Convolutional Neural Networks[C]// Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing (Volume 1:Long Papers). 2015: 167-176.
[15] Nguyen T H, Cho K, Grishman R. Joint Event Extraction via Recurrent Neural Networks[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. 2016: 300-309.
[16] Feng X C, Qin B, Liu T. A Language-Independent Neural Network for Event Detection[J]. Science China Information Sciences, 2018, 61(9): 092106.
doi: 10.1007/s11432-017-9359-x
[17] Sha L, Qian F, Chang B B, et al. Jointly Extracting Event Triggers and Arguments by Dependency-Bridge RNN and Tensor-Based Argument Interaction[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence and the 30th Innovative Applications of Artificial Intelligence Conference and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence. 2018: 5916-5923.
[18] Orr J W, Tadepalli P, Fern X. Event Detection with Neural Networks: A Rigorous Empirical Evaluation[OL]. arXiv Preprint, arXiv:1808.08504.
[19] Nguyen T H, Grishman R. Graph Convolutional Networks with Argument-Aware Pooling for Event Detection[C]// Proceedings of the 32nd AAAI Conference on Artificial Intelligence and the 30th Innovative Applications of Artificial Intelligence Conference and the 8th AAAI Symposium on Educational Advances in Artificial Intelligence. 2018: 5900-5907.
[20] Liu X, Luo Z C, Huang H Y. Jointly Multiple Events Extraction via Attention-Based Graph Information Aggregation [OL]. arXiv Preprint, arXiv:1809.09078.
[21] Yan H R, Jin X L, Meng X B, et al. Event Detection with Multi-Order Graph Convolution and Aggregated Attention[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. 2019: 5766-5770.
[22] Cui S Y, Yu B W, Liu T W, et al. Edge-Enhanced Graph Convolution Networks for Event Detection with Syntactic Relation[OL]. arXiv Preprint, arXiv: 2020.10757.
[23] Devlin J, Chang M W, Lee K, et al. BERT: Pre-Training of Deep Bidirectional Transformers for Language Understanding[OL]. arXiv Preprint, arXiv: 1810.04805.
[24] Wang X Z, Wang Z Q, Han X, et al. HMEAE: Hierarchical Modular Event Argument Extraction[C]// Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing. 2019: 5777-5783.
[25] Walker C, Strassel S, Medero J, et al. ACE 2005 Multilingual Training Corpus[OL]. Philadelphia: Linguistic Data Consortium, 2006. https://doi.org/10.35111/mwxc-vh88.
[26] LeCun Y, Bottou L, Bengio Y, et al. Gradient-Based Learning Applied to Document Recognition[J]. Proceedings of the IEEE, 1998, 86(11): 2278-2324.
doi: 10.1109/5.726791
[27] Mikolov T, Chen K, Corrado G, et al. Efficient Estimation of Word Representations in Vector Space[OL]. arXiv Preprint, arXiv:1301.3781.
[28] Zhang S, Zheng D Q, Hu X C, et al. Bidirectional Long Short-Term Memory Networks for Relation Classification[C]// Proceedings of the 29th Pacific Asia Conference on Language, Information and Computation. 2015: 73-78.
[29] Chen Y B, Yang H, Liu K, et al. Collective Event Detection via a Hierarchical and Bias Tagging Networks with Gated Multi-Level Attention Mechanisms[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 1267-1276.
[30] Li Q, Ji H, Huang L. Joint Event Extraction via Structured Prediction with Global Features[C]// Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers). 2013: 73-82.
[31] Liu S L, Liu K, He S Z, et al. A Probabilistic Soft Logic Based Approach to Exploiting Latent and Global Information in Event Classification[C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. 2016: 2993-2999.
[32] Liu S L, Chen Y B, Liu K, et al. Exploiting Argument Information to Improve Event Detection via Supervised Attention Mechanisms[C]// Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers). 2017: 1789-1798.
[33] Hong Y, Zhou W X, Zhang J L, et al. Self-Regulation: Employing a Generative Adversarial Network to Improve Event Detection[C]// Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics (Volume 1:Long Papers). 2018: 515-526.
[34] 程思伟, 葛唯益, 王羽, 等. BGCN: 基于BERT和图卷积网络的触发词检测[J]. 计算机科学, 2021, 48(7): 292-298.
doi: 10.11896/jsjkx.200500133
[34] (Cheng Siwei, Ge Weiyi, Wang Yu, et al. BGCN: Trigger Detection Based on BERT and Graph Convolution Network[J]. Computer Science, 2021, 48(7): 292-298.)
doi: 10.11896/jsjkx.200500133
[35] Wang X Z, Han X, Liu Z Y, et al. Adversarial Training for Weakly Supervised Event Detection[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies, Volume 1 (Long and Short Papers). 2019: 998-1008.
[1] 何丽, 杨美华, 刘璐瑶. 融合SPO语义和句法信息的事件检测方法*[J]. 数据分析与知识发现, 2023, 7(9): 114-124.
[2] 鲍彤, 章成志. ChatGPT中文信息抽取能力测评——以三种典型的抽取任务为例*[J]. 数据分析与知识发现, 2023, 7(9): 1-11.
[3] 张颖怡, 章成志, 周毅, 陈必坤. 基于ChatGPT的多视角学术论文实体识别:性能测评与可用性研究*[J]. 数据分析与知识发现, 2023, 7(9): 12-24.
[4] 余本功, 季晓晗. 基于ADGCN-MFM的多模态讽刺检测研究*[J]. 数据分析与知识发现, 2023, 7(10): 85-94.
[5] 郭樊容, 黄孝喜, 王荣波, 谌志群, 胡创, 谢一敏, 司博宇. 基于Transformer和图卷积神经网络的隐喻识别*[J]. 数据分析与知识发现, 2022, 6(4): 120-129.
[6] 余传明, 林虹君, 张贞港. 基于多任务深度学习的实体和事件联合抽取模型*[J]. 数据分析与知识发现, 2022, 6(2/3): 117-128.
[7] 范涛,王昊,吴鹏. 基于图卷积神经网络和依存句法分析的网民负面情感分析研究*[J]. 数据分析与知识发现, 2021, 5(9): 97-106.
[8] 谭荧, 唐亦非. 基于指代消解的引文内容抽取研究*[J]. 数据分析与知识发现, 2021, 5(8): 25-33.
[9] 陶玥,余丽,张润杰. 科技文献中短语级主题抽取的主动学习方法研究*[J]. 数据分析与知识发现, 2020, 4(10): 134-143.
[10] 刘志强,都云程,施水才. 基于改进的隐马尔科夫模型的网页新闻关键信息抽取*[J]. 数据分析与知识发现, 2019, 3(3): 120-128.
[11] 章成志,李铮. 基于学术论文全文的创新研究评价句抽取研究 *[J]. 数据分析与知识发现, 2019, 3(10): 12-18.
[12] 牟冬梅, 金姗, 琚沅红. 基于文献数据的疾病与基因关联关系研究*[J]. 数据分析与知识发现, 2018, 2(8): 98-106.
[13] 丁晟春,龚思兰,李红梅. 基于突发主题词和凝聚式层次聚类的微博突发事件检测研究*[J]. 现代图书情报技术, 2016, 32(7-8): 12-20.
[14] 李进华,安仲杰. 基于地理坐标的微博事件检测与分析*[J]. 现代图书情报技术, 2016, 32(2): 90-101.
[15] 段宇锋,黄思思. 中文植物物种多样性描述文本的信息抽取研究*[J]. 现代图书情报技术, 2016, 32(1): 87-96.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn