Please wait a minute...
Advanced Search
数据分析与知识发现  2023, Vol. 7 Issue (3): 131-141     https://doi.org/10.11925/infotech.2096-3467.2022.0392
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
基于对抗性迁移学习的药品不良反应实体识别研究*
韩普1,2(),仲雨乐1,陆豪杰1,马诗雯1
1南京邮电大学管理学院 南京 210003
2江苏省数据工程与知识服务重点实验室 南京 210023
Identifying Named Entities of Adverse Drug Reaction with Adversarial Transfer Learning
Han Pu1,2(),Zhong Yule1,Lu Haojie1,Ma Shiwen1
1School of Management, Nanjing University of Posts & Telecommunications, Nanjing 210003, China
2Jiangsu Provincial Key Laboratory of Data Engineering and Knowledge Service, Nanjing 210023, China
全文: PDF (1079 KB)   HTML ( 20
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 为解决在线健康社区中实体表述不规范和边界不显著的问题,提出一种基于对抗性迁移学习的药品不良反应实体识别模型ATL-BCA。【方法】 通过Word2Vec生成融合在线医疗健康领域外部语义特征向量;基于迁移学习思想采用共享和私有BiLSTM分别抽取实体识别和分词任务的共享边界信息及私有信息;利用多头注意力机制捕捉句子整体依赖性,并使用对抗训练过滤分词任务的私有信息以消除冗余特征对实体识别任务的影响;最后,借助条件随机场约束预测标签序列结果。【结果】 在自构建药品不良反应数据集上进行实验,引入对抗性迁移学习的ATL-BCA模型实体识别F1值达到91.35%,较主流模型Word2Vec-BiLSTM-CRF和BERT-BiLSTM-CRF分别提升5.28和2.98个百分点。【局限】 仅选用“三九健康药物网”作为实验数据源,且数据集规模较小。【结论】 ATL-BCA模型不仅可以充分利用实体识别和分词任务共享边界信息,而且能够过滤分词任务私有特征,从而有效提升在线健康社区中药品不良反应实体识别效果。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
韩普
仲雨乐
陆豪杰
马诗雯
关键词 对抗性迁移学习多头注意力机制命名实体识别药品不良反应    
Abstract

[Objective] This paper proposes an entity recognition model for adverse drug reactions based on adversarial transfer learning, ATL-BCA, aiming to address the problem of non-standard entity representations and insignificant boundaries in online health communities. [Methods] Firstly, we generated the external semantic feature vectors fused with the online medical domain knowledge with Word2Vec. Secondly, based on the transfer learning, we utilized the shared and private BiLSTM to extract the shared boundary information and private features for entity recognition and word segmentation tasks. Next, we used the multi-head attention mechanism to capture the overall sentence dependency and used adversarial training to filter the private information of the word segmentation task. This helped us eliminate the influence of redundant features on the entity recognition task. Finally, we predicted the label sequence results with the help of CRF constraints. [Results] We used a self-constructed social media adverse drug reaction dataset to examine the proposed model with. The F1 value of the new model reached 91.35%, which is 5.28% and 2.98% higher than Word2Vec-BiLSTM-CRF and BERT-BiLSTM-CRF. [Limitations] We only retrieved the experimental data from Sanjiu Health & Medicine Site, the scale of the constructed dataset is relatively small. [Conclusions] The ATL-BCA model fully utilizes the shared boundary information between entity recognition and word segmentation tasks. It also filters the private features of the word segmentation tasks, effectively improving the entity recognition performance of adverse drug reactions in online health communities.

Key wordsAdversarial Transfer Learning    Multi-Head Attention Mechanism    Named Entity Recognition    Adverse Drug Reactions
收稿日期: 2022-04-23      出版日期: 2023-04-13
ZTFLH:  TP391  
基金资助:国家社会科学基金项目(17CTQ022);江苏省高校哲学社会科学重大项目(2020SJZDA102);国家级大学生创新训练计划项目(SZDG2021040)
通讯作者: 韩普,ORCID:0000-0001-5867-4292,E-mail:hanpu@niupt.edu.cn。   
引用本文:   
韩普, 仲雨乐, 陆豪杰, 马诗雯. 基于对抗性迁移学习的药品不良反应实体识别研究*[J]. 数据分析与知识发现, 2023, 7(3): 131-141.
Han Pu, Zhong Yule, Lu Haojie, Ma Shiwen. Identifying Named Entities of Adverse Drug Reaction with Adversarial Transfer Learning. Data Analysis and Knowledge Discovery, 2023, 7(3): 131-141.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2022.0392      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2023/V7/I3/131
Fig.1  ATL-BCA模型总体结构
Fig.2  药品不良反应实体识别实验流程
示例 BIO标注
效果还行但副作用好大,吃了几天后头晕嗜睡,四肢无
力。
效/O果/O还/O行/O但/O副/O作/O用/O好/O大/O,/O吃/O了/O几/B-Time天/I-Time后/O头/B-Symptom晕/I-Symptom嗜/I-Symptom睡/I-Symptom,/O四/B-Part肢/I-Part无/B-Symptom力/I-Symptom。/O
Table 1  药品不良反应实体标注示例
类别 数量 比例
药品 737 17.70%
适应症 1 194 28.67%
剂量 289 6.93%
时间 464 11.14%
不良反应 1 080 25.93%
部位 401 9.63%
合计 4 165 100%
Table 2  数据集实体分布
模型参数名称 说明 参数值
Character Embedding Size 字向量维度 100
Hidden Size of LSTM LSTM隐藏层维度 120
Batch_size 每批数据量的大小 64
Loss Weight Coefficient 损失权重系数 0.06
Dropout 随机断开输入神经元的比例 0.3
Projections Head数量 8
Learning Rate 学习速率 0.001
Optimizer 优化器 Adam
Table 3  超参数设置
模型 P/% R/% F1/%
CRF 81.69 76.32 78.91
BiLSTM 84.15 79.36 81.68
BiLSTM-CRF 86.55 84.88 85.70
Table 4  基准模型实验结果
模型 P/% R/% F1/%
Word2Vec-BiLSTM-CRF 85.97 86.17 86.07
Word2Vec-BiLSTM-CRF-Attention 89.24 87.81 88.51
BERT-BiLSTM-CRF 88.69 88.06 88.37
ATL-BCA 89.52 90.06 89.79
Table 5  ATL-BCA与主流模型实验结果
外部语料 P/% R/% F1/%
Wiki 90.41 89.21 89.81
百度百科 91.36 89.81 90.58
在线医疗健康 91.18 91.52 91.35
Table 6  引入不同外部语义特征实验结果
标注方式 P/% R/% F1/%
BIO 91.18 91.52 91.35
BIOES 90.76 91.12 90.93
BMES 89.26 91.40 90.32
Table 7  不同标注体系实验结果
实例 吃完肚子不舒服开始拉肚子
分词 吃│完│肚子│不│舒服│开始│拉肚子
S│S│B E│S│B E│B E│B M E
BiLSTM-CRF 吃│完│肚子│不│舒服│开始│拉│肚子
O│O│B-Part I-Part│O│O O│O O│O B-Part I-Part
ATL-BCA 吃│完│肚子│不│舒服│开始│拉肚子
O│O│B-Part I-Part│O│O O│O O│B-Symptom I-Symptom I-Symptom
Table 8  ATL-BCA模型实例
[1] Nikfarjam A, Sarker A, O’Connor K, et al. Pharmacovigilance from Social Media: Mining Adverse Drug Reaction Mentions Using Sequence Labeling with Word Embedding Cluster Features[J]. Journal of the American Medical Informatics Association, 2015, 22(3): 671-681.
doi: 10.1093/jamia/ocu041 pmid: 25755127
[2] 柳鹏程, 王佳域, 陈锦敏, 等. 欧美药物警戒政策研究及对我国的启示[J]. 中国药物警戒, 2020, 17(12): 877-882.
[2] ( Liu Pengcheng, Wang Jiayu, Chen Jinmin, et al. Pharmacovigilance Laws in Europe and America and Their Implications for China[J]. Chinese Journal of Pharmacovigilance, 2020, 17(12): 877-882.)
[3] 张亚飞, 于琦, 王于心, 等. 基于药物论坛中潜在不良反应与适应症的知识发现体系构建[J]. 中华医学图书情报杂志, 2020, 29(7): 38-43.
[3] ( Zhang Yafei, Yu Qi, Wang Yuxin, et al. Establishment of Knowledge Discovery System for Potential Adverse Reactions of Drugs and Indications for Their Use in Drug Forum[J]. Chinese Journal of Medical Library and Information Science, 2020, 29(7): 38-43.)
[4] 范馨月, 崔雷. 基于文本挖掘的药物副作用知识发现研究[J]. 数据分析与知识发现, 2018, 2(3): 79-86.
[4] ( Fan Xinyue, Cui Lei. Using Text Mining to Discover Drug Side Effects: Case Study of PubMed[J]. Data Analysis and Knowledge Discovery, 2018, 2(3): 79-86.)
[5] Leaman R, Wojtulewicz L, Sullivan R, et al. Towards Internet-Age Pharmacovigilance: Extracting Adverse Drug Reactions from User Posts to Health-Related Social Networks[C]// Proceedings of the 2010 Workshop on Biomedical Natural Language Processing. ACM, 2010: 117-125.
[6] 刘浏, 王东波. 命名实体识别研究综述[J]. 情报学报, 2018, 37(3): 329-340.
[6] ( Liu Liu, Wang Dongbo. A Review on Named Entity Recognition[J]. Journal of the China Society for Scientific and Technical Information, 2018, 37(3): 329-340.)
[7] 庄福振, 罗平, 何清, 等. 迁移学习研究进展[J]. 软件学报, 2015, 26(1): 26-39.
[7] ( Zhuang Fuzhen, Luo Ping, He Qing, et al. Survey on Transfer Learning Research[J]. Journal of Software, 2015, 26(1): 26-39.)
[8] 杨飘, 董文永. 基于BERT嵌入的中文命名实体识别方法[J]. 计算机工程, 2020, 46(4): 40-45.
[8] ( Yang Piao, Dong Wenyong. Chinese Named Entity Recognition Method Based on BERT Embedding[J]. Computer Engineering, 2020, 46(4): 40-45.)
[9] Luo W C, Yang F. An Empirical Study of Automatic Chinese Word Segmentation for Spoken Language Understanding and Named Entity Recognition[C]// Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics:Human Language Technologies. ACL, 2016: 238-248.
[10] Peng N Y, Dredze M. Improving Named Entity Recognition for Chinese Social Media with Word Segmentation Representation Learning[OL]. arXiv Preprint, arXiv: 1603.00786.
[11] Denton E, Chintala S, Szlam A, et al. Deep Generative Image Models Using a Laplacian Pyramid of Adversarial Networks[OL]. arXiv Preprint, arXiv: 1506.05751.
[12] Tzeng E, Hoffman J, Saenko K, et al. Adversarial Discriminative Domain Adaptation[C]// Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition. 2017: 2962-2971.
[13] Gurulingappa H, Mateen-Rajput A, Toldo L. Extraction of Potential Adverse Drug Events from Medical Case Reports[J]. Journal of Biomedical Semantics, 2012, 3(1): 15.
doi: 10.1186/2041-1480-3-15 pmid: 23256479
[14] Xu J, Lee H J, Ji Z C, et al. UTH_CCB System for Adverse Drug Reaction Extraction from Drug Labels at TAC-ADR 2017[C]// Proceedings of the 2017 Text Analysis Conference. 2017.
[15] Narayanan S, Mannam K, Rajan S P, et al. Evaluation of Transfer Learning for Adverse Drug Event and Medication Entity Extraction[C]// Proceedings of the 3rd Clinical Natural Language Processing Workshop. 2020: 55-64.
[16] Florez E, Precioso F, Riveill M, et al. Named Entity Recognition Using Neural Networks for Clinical Notes[C]// Proceedings of the 2018 International Workshop on Medication and Adverse Drug Event Detection. PMLR, 2018: 7-15.
[17] Kang N, Singh B, Bui C, et al. Knowledge-Based Extraction of Adverse Drug Events from Biomedical Text[J]. BMC Bioinformatics, 2014, 15: 64.
doi: 10.1186/1471-2105-15-64 pmid: 24593054
[18] Dandala B, Joopudi V, Devarakonda M. Adverse Drug Events Detection in Clinical Notes by Jointly Modeling Entities and Relations Using Neural Networks[J]. Drug Safety, 2019, 42(1): 135-146.
doi: 10.1007/s40264-018-0764-x pmid: 30649738
[19] Chen Y, Zhou C, Li T, et al. Named Entity Recognition from Chinese Adverse Drug Event Reports with Lexical Feature Based BiLSTM-CRF and Tri-Training[J]. Journal of Biomedical Informatics, 2019, 96: 103252.
doi: 10.1016/j.jbi.2019.103252
[20] Christopoulou F, Tran T T, Sahu S K, et al. Adverse Drug Events and Medication Relation Extraction in Electronic Health Records with Ensemble Deep Learning Methods[J]. Journal of the American Medical Informatics Association, 2020, 27(1): 39-46.
doi: 10.1093/jamia/ocz101 pmid: 31390003
[21] Wu H, Ji J T, Tian H M, et al. Chinese-Named Entity Recognition from Adverse Drug Event Records: Radical Embedding-Combined Dynamic Embedding-Based BERT in a Bidirectional Long Short-Term Conditional Random Field (Bi-LSTM-CRF) Model[J]. JMIR Medical Informatics, 2021, 9(12): e26407.
doi: 10.2196/26407
[22] Cocos A, Fiks A G, Masino A J. Deep Learning for Pharmacovigilance: Recurrent Neural Network Architectures for Labeling Adverse Drug Reactions in Twitter Posts[J]. Journal of the American Medical Informatics Association, 2017, 24(4): 813-821.
doi: 10.1093/jamia/ocw180 pmid: 28339747
[23] 魏巍, 郑杜. 融合统计学习和语义过滤的ADR信号抽取模型构建研究[J]. 图书情报工作, 2018, 62(5): 115-124.
doi: 10.13266/j.issn.0252-3116.2018.05.013
[23] ( Wei Wei, Zheng Du. The Study of Adverse Drug Reaction Signal Extraction Framework Based on the Integrated Statistical Learning and Semantic Filter[J]. Library and Information Service, 2018, 62(5): 115-124.)
doi: 10.13266/j.issn.0252-3116.2018.05.013
[24] 牟冬梅, 琚沅红, 戴文浩, 等. 虚拟健康社区文本数据知识发现策略与模型[J]. 图书情报工作, 2018, 62(5): 125-131.
doi: 10.13266/j.issn.0252-3116.2018.05.014
[24] ( Mu Dongmei, Ju Yuanhong, Dai Wenhao, et al. Knowledge Discovery Strategy and Model of Virtual Health Community Text Data[J]. Library and Information Service, 2018, 62(5): 125-131.)
doi: 10.13266/j.issn.0252-3116.2018.05.014
[25] Metke-Jimenez A, Karimi S. Concept Extraction to Identify Adverse Drug Reactions in Medical Forums: A Comparison of Algorithms[OL]. arXiv Preprint, arXiv: 1504.06936.
[26] Yates A, Goharian N, Frieder O. Extracting Adverse Drug Reactions from Social Media[C]// Proceedings of the 29th AAAI Conference on Artificial Intelligence. ACM, 2015: 2460-2467.
[27] Tang B Z, Hu J L, Wang X L, et al. Recognizing Continuous and Discontinuous Adverse Drug Reaction Mentions from Social Media Using LSTM-CRF[J]. Wireless Communications and Mobile Computing, 2018, 2018: 1-8.
[28] Stanovsky G, Gruhl D, Mendes P. Recognizing Mentions of Adverse Drug Reaction in Social Media Using Knowledge-Infused Recurrent Models[C]// Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics. 2017: 142-151.
[29] Lehmann J, Isele R, Jakob M, et al. DBpedia—a Large-Scale, Multilingual Knowledge Base Extracted from Wikipedia[J]. Semantic Web, 2015, 6(2): 167-195.
doi: 10.3233/SW-140134
[30] Asghari M, Sierra-Sosa D, Elmaghraby A S. BINER: A Low-Cost Biomedical Named Entity Recognition[J]. Information Sciences, 2022, 602: 184-200.
doi: 10.1016/j.ins.2022.04.037
[31] 朱笑笑, 杨尊琦, 刘婧. 基于Bi-LSTM和CRF的药品不良反应抽取模型构建[J]. 数据分析与知识发现, 2019, 3(2): 90-97.
[31] ( Zhu Xiaoxiao, Yang Zunqi, Liu Jing. Construction of an Adverse Drug Reaction Extraction Model Based on Bi-LSTM and CRF[J]. Data Analysis and Knowledge Discovery, 2019, 3(2): 90-97.)
[32] Ruder S, Peters M E, Swayamdipta S, et al. Transfer Learning in Natural Language Processing[C]// Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics. 2019: 15-18.
[33] Yadav S, Ekbal A, Saha S, et al. A Unified Multi-Task Adversarial Learning Framework for Pharmacovigilance Mining[C]// Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. 2019: 5234-5245.
[34] 薛振宇, 线岩团, 余正涛, 等. 融合词典与对抗迁移的越南语事件实体识别[J]. 计算机工程, 2022, 48(3): 107-114.
[34] ( Xue Zhenyu, Xian Yantuan, Yu Zhengtao, et al. Vietnamese Event Entity Recognition Combining Dictionary and Adversarial Transfer[J]. Computer Engineering, 2022, 48(3): 107-114.)
[35] 董哲, 邵若琦, 陈玉梁, 等. 基于BERT和对抗训练的食品领域命名实体识别[J]. 计算机科学, 2021, 48(5): 247-253.
doi: 10.11896/jsjkx.200800181
[35] ( Dong Zhe, Shao Ruoqi, Chen Yuliang, et al. Named Entity Recognition in Food Field Based on BERT and Adversarial Training[J]. Computer Science, 2021, 48(5): 247-253.)
doi: 10.11896/jsjkx.200800181
[36] Cao P F, Chen Y B, Liu K, et al. Adversarial Transfer Learning for Chinese Named Entity Recognition with Self-Attention Mechanism[C]// Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing. 2018: 182-192.
[37] Bekoulis G, Deleu J, Demeester T, et al. Adversarial Training for Multi-Context Joint Entity and Relation Extraction[OL]. arXiv Preprint, arXiv: 1808.06876.
[38] Zhang T, Lin H, Ren Y, et al. Identifying Adverse Drug Reaction Entities from Social Media with Adversarial Transfer Learning Model[J]. Neurocomputing, 2021, 453: 254-262.
doi: 10.1016/j.neucom.2021.05.007
[39] Kang K M, Tian S W, Yu L. Named Entity Recognition of Local Adverse Drug Reactions in Xinjiang Based on Transfer Learning[J]. Journal of Intelligent & Fuzzy Systems, 2021, 40(5): 8899-8914.
[40] Cornegruta S, Bakewell R, Withey S, et al. Modelling Radiological Language with Bidirectional Long Short-Term Memory Networks[C]// Proceedings of the 7th International Workshop on Health Text Mining and Information Analysis. 2016: 17-27.
[41] 朱张莉, 饶元, 吴渊, 等. 注意力机制在深度学习中的研究进展[J]. 中文信息学报, 2019, 33(6): 1-11.
[41] ( Zhu Zhangli, Rao Yuan, Wu Yuan, et al. Research Progress of Attention Mechanism in Deep Learning[J]. Journal of Chinese Information Processing, 2019, 33(6): 1-11.)
[42] 石磊, 王毅, 成颖, 等. 自然语言处理中的注意力机制研究综述[J]. 数据分析与知识发现, 2020, 4(5): 1-14.
[42] ( Shi Lei, Wang Yi, Cheng Ying, et al. Review of Attention Mechanism in Natural Language Processing[J]. Data Analysis and Knowledge Discovery, 2020, 4(5): 1-14.)
[43] Vaswani A, Shazeer N, Parmar N, et al. Attention is All You Need[C]// Proceedings of the 31st International Conference on Neural Information Processing Systems. ACM, 2017: 6000-6010.
[44] Sutton C, McCallum A. An Introduction to Conditional Random Fields for Relational Learning[A]// Koller D. Introduction to Statistical Relational Learning[M]. Cambridge: MIT Press, 2006.
[45] Carlezon W A, Béguin C, Knoll A T, et al. Kappa-Opioid Ligands in the Study and Treatment of Mood Disorders[J]. Pharmacology & Therapeutics, 2009, 123(3): 334-343.
[46] Subramanyam K K, Sangeetha S. Deep Contextualized Medical Concept Normalization in Social Media Text[J]. Procedia Computer Science, 2020, 171: 1353-1362.
doi: 10.1016/j.procs.2020.04.145
[1] 裴伟, 孙水发, 李小龙, 鲁际, 杨柳, 吴义熔. 融合领域知识的医学命名实体识别研究*[J]. 数据分析与知识发现, 2023, 7(3): 142-154.
[2] 段宇锋, 贺国秀. 面向中文医学文本命名实体识别的神经网络模块分解分析*[J]. 数据分析与知识发现, 2023, 7(2): 26-37.
[3] 胡吉明, 钱玮, 文鹏, 吕晓光. 基于结构功能和实体识别的文本语义表示——以病历领域为例*[J]. 数据分析与知识发现, 2022, 6(8): 110-121.
[4] 张云秋, 汪洋, 李博诚. 基于RoBERTa-wwm动态融合模型的中文电子病历命名实体识别*[J]. 数据分析与知识发现, 2022, 6(2/3): 242-250.
[5] 余传明, 林虹君, 张贞港. 基于多任务深度学习的实体和事件联合抽取模型*[J]. 数据分析与知识发现, 2022, 6(2/3): 117-128.
[6] 张芳丛, 秦秋莉, 姜勇, 庄润涛. 基于RoBERTa-WWM-BiLSTM-CRF的中文电子病历命名实体识别研究[J]. 数据分析与知识发现, 2022, 6(2/3): 251-262.
[7] 范涛, 王昊, 张卫, 李晓敏. 基于机器阅读理解的非遗文本实体抽取研究*[J]. 数据分析与知识发现, 2022, 6(12): 70-79.
[8] 刘兴丽, 范俊杰, 马海群. 面向小样本命名实体识别的数据增强算法改进策略研究*[J]. 数据分析与知识发现, 2022, 6(10): 128-141.
[9] 徐晨飞, 叶海影, 包平. 基于深度学习的方志物产资料实体自动识别模型构建研究*[J]. 数据分析与知识发现, 2020, 4(8): 86-97.
[10] 高原,施元磊,张蕾,曹天奕,冯筠. 基于游记文本的游客游览行程重构*[J]. 数据分析与知识发现, 2020, 4(2/3): 165-172.
[11] 马建霞,袁慧,蒋翔. 基于Bi-LSTM+CRF的科学文献中生态治理技术相关命名实体抽取研究*[J]. 数据分析与知识发现, 2020, 4(2/3): 78-88.
[12] 刘婧茹,宋阳,贾睿,张翼鹏,罗勇,马敬东. 基于BiLSTM-CRF中文临床文本中受保护的健康信息识别*[J]. 数据分析与知识发现, 2020, 4(10): 124-133.
[13] 黄菡,王宏宇,王晓光. 结合主动学习的条件随机场模型用于法律术语的自动识别*[J]. 数据分析与知识发现, 2019, 3(6): 66-74.
[14] 朱笑笑,杨尊琦,刘婧. 基于Bi-LSTM和CRF的药品不良反应抽取模型构建*[J]. 数据分析与知识发现, 2019, 3(2): 90-97.
[15] 陈美杉,夏晨曦. 肝癌患者在线提问的命名实体识别研究:一种基于迁移学习的方法 *[J]. 数据分析与知识发现, 2019, 3(12): 61-69.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn