Please wait a minute...
Advanced Search
数据分析与知识发现  2024, Vol. 8 Issue (5): 80-90     https://doi.org/10.11925/infotech.2096-3467.2023.0485
  研究论文 本期目录 | 过刊浏览 | 高级检索 |
一种基于改进K核分解的合作网络关键节点集识别方法*
张大勇1(),门浩2,苏展1
1哈尔滨工业大学互动媒体设计与装备服务创新重点实验室 哈尔滨 150001
2哈尔滨工业大学计算机科学与技术学院 哈尔滨 150001
Identifying Critical Nodes of Collaboration Networks Based on Improved K-shell Decomposition
Zhang Dayong1(),Men Hao2,Su Zhan1
1Key Laboratory of Interactive Media Design and Equipment Service Innovation, Harbin Institute of Technology, Harbin 150001, China
2Faculty of Computing, Harbin Institute of Technology, Harbin 150001, China
全文: PDF (2295 KB)   HTML ( 10
输出: BibTeX | EndNote (RIS)      
摘要 

【目的】 针对关键节点集识别算法中广泛存在的退化性问题,提出一种以半局域中心性为基础的改进型K-shell分解算法。【方法】 算法根据节点一阶邻居信息构建半局域中心性指标,在考虑剩余节点的半局域信息和已移除节点的半局域信息基础上,通过递归移除方式确定最终的关键节点集。【结果】 6组实际合作网络数据实验表明,改进的K-shell分解算法能够有效消除原有算法中的退化性问题,具有较高的计算准确性和较低的计算复杂度,适用于大规模合作网络中关键节点集的识别。【局限】 受网络结构属性的影响,在部分样本网络中计算准确性低于介数中心性方法。【结论】 通过对改进的K-shell分解算法计算所得的核心节点集的有效保护,能够提升合作网络的稳定性,有利于合作网络目标的实现。

服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张大勇
门浩
苏展
关键词 合作网络分解算法关键节点集计算复杂度    
Abstract

[Objective] This paper proposes an improved K-shell decomposition algorithm based on semi-local centrality, aiming to address the degradation issue of critical nodes identification. [Methods] First, we constructed a semi-local centrality index based on the nodes’ first-order neighbor information. Then, we determined the final key node set by recursive removal, with the semi-local information of the remaining and removed nodes. [Results] We examined our algorithm with six groups of cooperative networks. It could effectively eliminate the degradation issue of the original algorithm with high computational accuracy and low computational complexity. [Limitations] Due to the influence of network structures, the calculation accuracy of some sample networks was lower than that of the betweenness centrality algorithm. [Conclusions] The new algorithm can improve the stability of the collaboration network and identify key node sets in large-scale practical networks.

Key wordsCollaboration Network    Decomposition Algorithm    Critical Nodes    Computational Complexity
收稿日期: 2023-05-22      出版日期: 2024-03-15
ZTFLH:  TP393  
  G203  
基金资助:*国家社会科学基金面上项目(21BDJ062);哈尔滨工业大学新兴交叉融拓计划(SYL-JC-202203)
通讯作者: 张大勇, ORCID:0000-0001-9122-2220, E-mail: yongzhhit@163.com。   
引用本文:   
张大勇, 门浩, 苏展. 一种基于改进K核分解的合作网络关键节点集识别方法*[J]. 数据分析与知识发现, 2024, 8(5): 80-90.
Zhang Dayong, Men Hao, Su Zhan. Identifying Critical Nodes of Collaboration Networks Based on Improved K-shell Decomposition. Data Analysis and Knowledge Discovery, 2024, 8(5): 80-90.
链接本文:  
https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/10.11925/infotech.2096-3467.2023.0485      或      https://manu44.magtech.com.cn/Jwk_infotech_wk3/CN/Y2024/V8/I5/80
Fig.1  K-shell算法和IKs算法执行过程比较
Network n m <k> L LCC C β t h
AstroPh 18 772 198 110 21.107 4.194 17 903 0.677 0.015
CondMat 23 133 93 497 8.083 5.352 21 363 0.706 0.045
CA-GrQc 5 242 14 496 5.531 6.049 4 158 0.687 0.059
HepTh 9 877 25 998 5.264 5.945 8 638 0.600 0.079
NetScience 1 589 2 742 3.451 5.823 379 0.878 0.144
Jazz 198 2 742 27.697 2.235 198 0.633 0.026
Table 1  6组合作网络的基本结构
Fig.2  IKs算法与三种代表性算法在真实网络上的传播结果比较
Fig.3  在不同攻击策略下网络脆弱性指数和最大连通分量变化情况
[1] Zhai L, Yan X B. A Directed Collaboration Network for Exploring the Order of Scientific Collaboration[J]. Journal of Informetrics, 2022, 16(4): Article No.101345.
[2] Nakata C, Im S. Spurring Cross-Functional Integration for Higher New Product Performance: A Group Effectiveness Perspective[J]. Journal of Product Innovation Management, 2010, 27(4): 554-571.
[3] Quintane E, Pattison P E, Robins G L, et al. Short- and Long-Term Stability in Organizational Networks: Temporal Structures of Project Teams[J]. Social Networks, 2013, 35(4): 528-540.
[4] 贺超城, 吴江, 刘福珍, 等. 基于地理科研主导网络的关键节点识别研究——以药学领域为例[J]. 情报学报, 2021, 40(12): 1312-1324.
[4] (He Chaocheng, Wu Jiang, Liu Fuzhen, et al. Identifying Key Nodes via a Geographical Research Dominance Network: A Case Study of the Pharmaceutical Field[J]. Journal of the China Society for Scientific and Technical Information, 2021, 40(12): 1312-1324.)
[5] 崔芳, 孙笑明, 熊旺, 等. 关键研发者自我中心网络变化对企业创新绩效的影响: 以整体网络为中介变量[J]. 科技进步与对策, 2017, 34(17): 80-90.
[5] (Cui Fang, Sun Xiaoming, Xiong Wang, et al. The Research on the Impact of the Ego-Network’s Changes from the Key Inventors to the Innovation Performance: The Whole Network as an Intermediary Variable[J]. Science & Technology Progress and Policy, 2017, 34(17): 80-90.)
[6] Lü L Y, Chen D B, Ren X L, et al. Vital Nodes Identification in Complex Networks[J]. Physics Reports, 2016, 650: 1-63.
[7] 任晓龙, 吕琳媛. 网络重要节点排序方法综述[J]. 科学通报, 2014, 59(13): 1175-1197.
[7] (Ren Xiaolong, Lü Linyuan. Review of Ranking Nodes in Complex Networks[J]. Chinese Science Bulletin, 2014, 59(13): 1175-1197.)
[8] Moody J. The Structure of a Social Science Collaboration Network: Disciplinary Cohesion from 1963 to 1999[J]. American Sociological Review, 2004, 69(2): 213-238.
[9] Pinto P E, Vallone A, Honores G. The Structure of Collaboration Networks: Findings from Three Decades of Co-Invention Patents in Chile[J]. Journal of Informetrics, 2019, 13(4): Article No.100984.
[10] Kitsak M, Gallos L K, Havlin S, et al. Identification of Influential Spreaders in Complex Networks[J]. Nature Physics, 2010, 6: 888-893.
[11] Freeman L C. Centrality in Social Networks Conceptual Clarification[J]. Social Networks, 1978, 1(3): 215-239.
[12] Newman M E J. The Structure and Function of Complex Networks[J]. SIAM Review, 2003, 45(2): 167-256.
[13] Wang S B, Zhao J L. Multi-Attribute Integrated Measurement of Node Importance in Complex Networks[J]. Chaos, 2015, 25(11): Article No.113105.
[14] Zhao J, Wang Y C, Deng Y. Identifying Influential Nodes in Complex Networks from Global Perspective[J]. Chaos, Solitons & Fractals, 2020, 133: Article No.109637.
[15] Buldyrev S V, Parshani R, Paul G, et al. Catastrophic Cascade of Failures in Interdependent Networks[J]. Nature, 2010, 464: 1025-1028.
[16] Rossa F D, Pecora L, Blaha K, et al. Symmetries and Cluster Synchronization in Multilayer Networks[J]. Nature Communications, 2020, 11: Article No.3179.
[17] Peng K Y, Lu Z, Lin V, et al. A Multilayer Network Model of the Coevolution of the Spread of a Disease and Competing Opinions[J]. Mathematical Models and Methods in Applied Sciences, 2021, 31(12): 2455-2494.
[18] 陈诗, 任卓明, 刘闯, 等. 时序网络中关键节点的识别方法研究进展[J]. 电子科技大学学报, 2020, 49(2): 291-314.
[18] (Chen Shi, Ren Zhuoming, Liu Chuang, et al. Identification Methods of Vital Nodes on Temporal Networks[J]. Journal of University of Electronic Science and Technology of China, 2020, 49(2): 291-314.)
[19] Chen D B, Lü L Y, Shang M S, et al. Identifying Influential Nodes in Complex Networks[J]. Physica A: Statistical Mechanics and Its Applications, 2012, 391(4): 1777-1787.
[20] Liu F C, Zhang N, Cao C. An Evolutionary Process of Global Nanotechnology Collaboration: A Social Network Analysis of Patents at USPTO[J]. Scientometrics, 2017, 111(3): 1449-1465.
[21] Brin S, Page L. The Anatomy of a Large-Scale Hypertextual Web Search Engine[J]. Computer Networks and ISDN Systems, 1998, 30(1-7): 107-117.
[22] Kleinberg J M. Authoritative Sources in a Hyperlinked Environment[J]. Journal of the ACM, 1999, 46(5): 604-632.
[23] Xu S, Wang P. Identifying Important Nodes by Adaptive LeaderRank[J]. Physica A: Statistical Mechanics and Its Applications, 2017, 469: 654-664.
[24] 熊回香, 杜瑾, 代沁泉, 等. 基于主题与多维计量指标的学者学术影响力评价研究[J]. 情报理论与实践, 2021, 44(8): 22-27.
doi: 10.16353/j.cnki.1000-7490.2021.08.004
[24] (Xiong Huixiang, Du Jin, Dai Qinquan, et al. Scholars Academic Influence Evaluation Research Based on Topics and Multi-Dimensional Metrics[J]. Information Studies: Theory & Application, 2021, 44(8): 22-27.)
doi: 10.16353/j.cnki.1000-7490.2021.08.004
[25] Chen B L, Jiang W X, Chen Y X, et al. Influence Blocking Maximization on Networks: Models, Methods and Applications[J]. Physics Reports, 2022, 976: 1-54.
[26] Kempe D, Kleinberg J, Tardos É. Maximizing the Spread of Influence Through a Social Network[C]// Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. 2003: 137-146.
[27] Mugisha S, Zhou H J. Identifying Optimal Targets of Network Attack by Belief Propagation[J]. Physical Review E, 2016, 94(1): 12305.
[28] Yu S B, Zeng Y F, Pan Y H, et al. Discovering a Cohesive Football Team Through Players’ Attributed Collaboration Networks[J]. Applied Intelligence, 2023, 53(11): 13506-13526.
[29] Liu X Y, Ye S, Fiumara G, et al. Influential Spreaders Identification in Complex Networks with TOPSIS and K-Shell Decomposition[J]. IEEE Transactions on Computational Social Systems, 2023, 10(1): 347-361.
[30] Maji G, Namtirtha A, Dutta A, et al. Influential Spreaders Identification in Complex Networks with Improved K-Shell Hybrid Method[J]. Expert Systems with Applications, 2020, 144: Article No.113092.
[31] Zeng A, Zhang C J. Ranking Spreaders by Decomposing Complex Networks[J]. Physics Letters A, 2013, 377(14): 1031-1035.
[32] 杨青, 郑璐, 邹星琪. 基于风险传播网络和K-Shell方法的复杂研发项目风险评价[J]. 管理评论, 2021, 33(9): 119-127.
[32] (Yang Qing, Zheng Lu, Zou Xingqi. Risk Analysis of Complex R&D Projects Based on Risk Propagation Network and K-Shell Method[J]. Management Review, 2021, 33(9): 119-127.)
[33] Zachary W W. An Information Flow Model for Conflict and Fission in Small Groups[J]. Journal of Anthropological Research, 1977, 33(4): 452-473.
[34] Hage P, Harary F. Structural Models in Anthropology[M]. Cambridge: Cambridge University Press, 1983: 56-60.
[35] Albert R, Jeong H, Barabási A L. Error and Attack Tolerance of Complex Networks[J]. Nature, 2000, 406: 378-382.
[36] Crucitti P, Latora V, Marchiori M, et al. Error and Attack Tolerance of Complex Networks[J]. Physica A: Statistical Mechanics and Its Applications, 2004, 340(1-3): 388-394.
[37] Schneider C M, Moreira A A, Andrade J S, et al. Mitigation of Malicious Attacks on Networks[J]. PNAS, 2011, 108(10): 3838-3841.
doi: 10.1073/pnas.1009440108 pmid: 21368159
[38] 韩忠明, 陈炎, 李梦琪, 等. 一种有效的基于三角结构的复杂网络节点影响力度量模型[J]. 物理学报, 2016, 65(16): 289-300.
[38] (Han Zhongming, Chen Yan, Li Mengqi, et al. An Efficient Node Influence Metric Based on Triangle in Complex Networks[J]. Acta Physica Sinica, 2016, 65(16): 289-300.)
[39] Bae J, Kim S. Identifying and Ranking Influential Spreaders in Complex Networks by Neighborhood Coreness[J]. Physica A: Statistical Mechanics and Its Applications, 2014, 395: 549-559.
[40] Gleiser P M, Danon L. Community Structure in Jazz[J]. Advances in Complex Systems, 2003, 6(4): 565-573.
[1] 余博文, 刘向. 突破式创新发明人的提前发现:基于专利知识图动态学习的预测*[J]. 数据分析与知识发现, 2023, 7(12): 40-51.
[2] 关鹏,王曰芬,傅柱,靳嘉林. 基于专利合作网络的研发团队识别及创新产出影响研究*[J]. 数据分析与知识发现, 2022, 6(5): 99-111.
[3] 鲁云蒙,刘铁忠. 基于知识关联性的科研合作网络隐性知识扩散模型研究:以重大科技工程为例*[J]. 数据分析与知识发现, 2021, 5(9): 10-20.
[4] 关鹏,王曰芬,靳嘉林,傅柱. 专利合作视角下技术创新合作网络演化分析——以国内语音识别技术领域为例*[J]. 数据分析与知识发现, 2021, 5(1): 112-127.
[5] 陈云伟, 张瑞红. 用于情报挖掘的典型网络社团划分算法比较研究*[J]. 数据分析与知识发现, 2018, 2(10): 84-94.
[6] 余传明, 龚雨田, 赵晓莉, 安璐. 基于多特征融合的金融领域科研合作推荐研究*[J]. 数据分析与知识发现, 2017, 1(8): 39-47.
[7] 吕伟民, 王小梅, 韩涛. 结合链路预测和ET机器学习的科研合作推荐方法研究*[J]. 数据分析与知识发现, 2017, 1(4): 38-45.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
版权所有 © 2015 《数据分析与知识发现》编辑部
地址:北京市海淀区中关村北四环西路33号 邮编:100190
电话/传真:(010)82626611-6626,82624938
E-mail:jishu@mail.las.ac.cn