Please wait a minute...
New Technology of Library and Information Service  2001, Vol. 17 Issue (6): 40-42    DOI: 10.11925/infotech.1003-3513.2001.06.15
article Current Issue | Archive | Adv Search |
On Methods and Techniques of Searching Three Principal Indexes
Han Lifeng   Liu Shuren
(Tsinghua University, Beijing 100084, China)
Export: BibTeX | EndNote (RIS)      

The three principal indexes,including science citation index, engineering index and index to science and technology, have several kinds of media, that is, print, online, CD-ROM, and Web databases,in which the latter two are widely used. Based on collections of Tsinghua University Library, this article describes their differences in coverage, characteristics, author field., etc. Methods and techniques of searching complex author index are explored. A brief introduction to some other indexes being frequently used in scient ificevaluat ing activities has been given.

Key wordsSCI      EI      ISTP      Web database      CD-ROM database      Searching method     
Received: 17 July 2001      Published: 25 December 2001


Corresponding Authors: Han Lifeng,Liu Shuren   
About author:: Han Lifeng,Liu Shuren

Cite this article:

Han Lifeng,Liu Shuren. On Methods and Techniques of Searching Three Principal Indexes. New Technology of Library and Information Service, 2001, 17(6): 40-42.

URL:     OR

[1] Lu Yunmeng,Liu Tiezhong. Diffusion Model for Tacit Knowledge of Scientific Cooperation Network Based on Relevance: Case Study of Major Sci-Tech Projects[J]. 数据分析与知识发现, 2021, 5(9): 10-20.
[2] Ma Jiangwei, Lv Xueqiang, You Xindong, Xiao Gang, Han Junmei. Extracting Relationship Among Military Domains with BERT and Relation Position Features[J]. 数据分析与知识发现, 2021, 5(8): 1-12.
[3] Xu Zengxulin, Xie Jing, Yu Qianqian. Designing New Evaluation Model for Talents[J]. 数据分析与知识发现, 2021, 5(8): 122-131.
[4] Chai Qingfeng, Shi Linyan, Mei Shan, Xiong Haitao, He Huixin. Extracting Knowledge Elements of Sci-Tech Literature Based on Artificial and Machine Features[J]. 数据分析与知识发现, 2021, 5(8): 132-144.
[5] Wang Qinjie, Qin Chunxiu, Ma Xubu, Liu Huailiang, Xu Cunzhen. Recommending Scientific Literature Based on Author Preference and Heterogeneous Information Network[J]. 数据分析与知识发现, 2021, 5(8): 54-64.
[6] Zhu Hou,Fang Qingyan. Quantifying and Examining Privacy Paradox of Social Media Users[J]. 数据分析与知识发现, 2021, 5(7): 111-125.
[7] Zhang Le, Leng Jidong, Lv Xueqiang, Cui Zhuo, Wang Lei, You Xindong. RLCPAR: A Rewriting Model for Chinese Patent Abstracts Based on Reinforcement Learning[J]. 数据分析与知识发现, 2021, 5(7): 59-69.
[8] Ruan Xiaoyun,Liao Jianbin,Li Xiang,Yang Yang,Li Daifeng. Interpretable Recommendation of Reinforcement Learning Based on Talent Knowledge Graph Reasoning[J]. 数据分析与知识发现, 2021, 5(6): 36-50.
[9] Shen Si,Li Qinyu,Ye Yuan,Sun Hao,Ye Wenhao. Topic Mining and Evolution Analysis of Medical Sci-Tech Reports with TWE Model[J]. 数据分析与知识发现, 2021, 5(3): 35-44.
[10] Zhang Xin,Wen Yi,Xu Haiyun. A Prediction Model with Network Representation Learning and Topic Model for Author Collaboration[J]. 数据分析与知识发现, 2021, 5(3): 88-100.
[11] He Xueyao, Ma Tingcan, Yue Mingliang, Ou Guiyan. Analyzing Highly Cited Papers Sponsored by National Natural Science Foundation of China[J]. 数据分析与知识发现, 2021, 5(2): 61-69.
[12] Li Xiao, Qu Jiansheng. Review of Application and Evolution of Meta-Analysis in Social Sciences[J]. 数据分析与知识发现, 2021, 5(11): 1-12.
[13] Chen Shiji, Qiu Junping, Yu Bo. Topic Analysis of LIS Big Data Research with Overlay Mapping[J]. 数据分析与知识发现, 2021, 5(10): 51-59.
[14] Yu Shuo,Hayat Dino Bedru,Chu Xinbei,Yuan Yuyuan,Wan Liangtian,Xia Feng. Understanding Serendipity in Science: A Survey[J]. 数据分析与知识发现, 2021, 5(1): 16-35.
[15] Li Gang, Guan Weidong, Ma Yaxue, Mao Jin. Predicting Social Media Visibility of Scholarly Articles[J]. 数据分析与知识发现, 2020, 4(8): 63-74.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938