Please wait a minute...
New Technology of Library and Information Service  2004, Vol. 20 Issue (5): 83-85    DOI: 10.11925/infotech.1003-3513.2004.05.22
Current Issue | Archive | Adv Search |
BP Neural Network Synthetic Evaluation Method for the Ability of Clerk Competed for Station
Li Panchi
(Library of Daqing Petroleum Institute, Heilongjiang 163318, China)
Export: BibTeX | EndNote (RIS)      

In this paper, a neural network synthetic evaluation method for the ability of clerk competence for station based on the analysis of the clerk examination data is proposed. The method can simulate career man to deal with clerk data with a series of parameter and it also can avoid subjective mistakes in the course of evaluation. The simulation experience proved availability and credibility of the method.

Key wordsNeural network      Clerk ability      General evaluation     
Received: 06 November 2003      Published: 25 May 2004


Corresponding Authors: Li Panchi     E-mail:
About author:: Li Panchi

Cite this article:

Li Panchi. BP Neural Network Synthetic Evaluation Method for the Ability of Clerk Competed for Station. New Technology of Library and Information Service, 2004, 20(5): 83-85.

URL:     OR

1 张新红. 用神经网络综合评价模型评价高技术项目的投资风险. 情报学报, 2001 (5)
2 周雪虹. 新信息技术条件下成人高校图书馆员工的素质教育. 图书馆论坛, 2003 (1)
3 王伟. 人工神经网络原理—— 入门与应用. 北京航空航天大学出版, 1995, 10
4 Abhijit S. Pandya. 神经网络模式识别极其实现. 电子工业出版社,1999, 6

[1] Gu Yaowen, Zhang Bowen, Zheng Si, Yang Fengchun, Li Jiao. Predicting Drug ADMET Properties Based on Graph Attention Network[J]. 数据分析与知识发现, 2021, 5(8): 76-85.
[2] Zhang Le, Leng Jidong, Lv Xueqiang, Cui Zhuo, Wang Lei, You Xindong. RLCPAR: A Rewriting Model for Chinese Patent Abstracts Based on Reinforcement Learning[J]. 数据分析与知识发现, 2021, 5(7): 59-69.
[3] Han Pu,Zhang Zhanpeng,Zhang Mingtao,Gu Liang. Normalizing Chinese Disease Names with Multi-feature Fusion[J]. 数据分析与知识发现, 2021, 5(5): 83-94.
[4] Wang Nan,Li Hairong,Tan Shuru. Predicting of Public Opinion Reversal with Improved SMOTE Algorithm and Ensemble Learning[J]. 数据分析与知识发现, 2021, 5(4): 37-48.
[5] Li Danyang, Gan Mingxin. Music Recommendation Method Based on Multi-Source Information Fusion[J]. 数据分析与知识发现, 2021, 5(2): 94-105.
[6] Ding Hao, Ai Wenhua, Hu Guangwei, Li Shuqing, Suo Wei. A Personalized Recommendation Model with Time Series Fluctuation of User Interest[J]. 数据分析与知识发现, 2021, 5(11): 45-58.
[7] Yin Haoran,Cao Jinxuan,Cao Luzhe,Wang Guodong. Identifying Emergency Elements Based on BiGRU-AM Model with Extended Semantic Dimension[J]. 数据分析与知识发现, 2020, 4(9): 91-99.
[8] Qiu Erli,He Hongwei,Yi Chengqi,Li Huiying. Research on Public Policy Support Based on Character-level CNN Technology[J]. 数据分析与知识发现, 2020, 4(7): 28-37.
[9] Liu Weijiang,Wei Hai,Yun Tianhe. Evaluation Model for Customer Credits Based on Convolutional Neural Network[J]. 数据分析与知识发现, 2020, 4(6): 80-90.
[10] Wang Mo,Cui Yunpeng,Chen Li,Li Huan. A Deep Learning-based Method of Argumentative Zoning for Research Articles[J]. 数据分析与知识发现, 2020, 4(6): 60-68.
[11] Yan Chun,Liu Lu. Classifying Non-life Insurance Customers Based on Improved SOM and RFM Models[J]. 数据分析与知识发现, 2020, 4(4): 83-90.
[12] Su Chuandong,Huang Xiaoxi,Wang Rongbo,Chen Zhiqun,Mao Junyu,Zhu Jiaying,Pan Yuhao. Identifying Chinese / English Metaphors with Word Embedding and Recurrent Neural Network[J]. 数据分析与知识发现, 2020, 4(4): 91-99.
[13] Xu Yuemei,Liu Yunwen,Cai Lianqiao. Predicitng Retweets of Government Microblogs with Deep-combined Features[J]. 数据分析与知识发现, 2020, 4(2/3): 18-28.
[14] Xiang Fei,Xie Yaotan. Recognition Model of Patient Reviews Based on Mixed Sampling and Transfer Learning[J]. 数据分析与知识发现, 2020, 4(2/3): 39-47.
[15] Ni Weijian,Guo Haoyu,Liu Tong,Zeng Qingtian. Online Product Recommendation Based on Multi-Head Self-Attention Neural Networks[J]. 数据分析与知识发现, 2020, 4(2/3): 68-77.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938