Please wait a minute...
New Technology of Library and Information Service  2004, Vol. 20 Issue (6): 42-45    DOI: 10.11925/infotech.1003-3513.2004.06.11
Current Issue | Archive | Adv Search |
Bottom-up Information Organization of IA and Concept Space(1)
Wang Guoqin   Zheng Xiaofang   Gan Liren
(Department of Information Management, Institute of Economical Management, Nanjing University of Science and Technology, Nanjing 210094, China)
Export: BibTeX | EndNote (RIS)      

In the paper , based on the method of Bottom-up information organization of IA ,the theories,methods,and steps of concept space generation are explored. Furthermore,the applications in medical information retrieval system are introduced.

Key wordsIA      Information organization      Bottom-up      Concept space     
Received: 20 October 2003      Published: 25 June 2004


Corresponding Authors: Wang Guoqin     E-mail:
About author:: Wang Guoqin,Zheng Xiaofang,Gan Liren

Cite this article:

Wang Guoqin,Zheng Xiaofang,Gan Liren. Bottom-up Information Organization of IA and Concept Space(1). New Technology of Library and Information Service, 2004, 20(6): 42-45.

URL:     OR

1 Kimen,S.10questions about information architecture.June,22,1999. Dec.26,2002)
2 Peter Morville.Bottoms Up Designing complex,adaptive systems.December,2002. Dec.26,2002)
3 Scott Hill.An Interview with Louis Rosenfeld and Peter Morville. January ,1,2000. Nov.6,2002)
4 G.Salton.Mathematics and information retrieval.Journal of Doc  umentation,197935(1):1-29
5 Joon Ho Lee.Ranking method based on conceptual distance.Journal of Documentation,1993,49(2):85
6 邓珞华.概念空间—定义、意义、和局限.情报学报,2003(4):1-5
7 史田华.网络信息的智能化检索.图书馆杂志,2002(3):15-18
8 Hsinchun Chen,Joanne Martinez,Tobun D.Ng,and Bruce R.Schatz.A Concept Space Approach to Addressing the Vocabulary Problemin Scientific Information Retrieval:An Experiment on the Worm Community System,2000. Nov.6,2002)
9 Hsinchun Chen, Bruce R. Schatz.Semantic Retrieval for the NCSA Mosaic. Jan.6,
10 H.Chenand D.T.Ng.An algorithmic approach to concept exploration in a large knowledge network(automatic thesaurus consultation):symbolic branch-and-boundvs.connectionist Hopfield net activation.Journal of the American Society for Information Science,June,1995,46(5):348-369
11 朱晓华.基于概念空间方法的信息检索技术研究.大学图书馆学报,2003(2):47-53
12 PeterClark,JohnThompson,Heather Holmback,Lisbeth Dun can.ExploitingaThesaurus-Based Semantic Netfor Knowledge-Based Search.Innovative Applications of AI(AAAI/IAAI’00),2000(12):988-995
13 Douglas Tudhope.Augmenting Thesaurus Relationships:Possibilities for Retrieva.Journal of Digital information,8 Digitalli braries,Information discovery,2001,1(8). Jan.6,2003)
14 Viktor PEKAR,Steffen STAAB.Factoring the structure of a the saurus into a semantic classification decision. Staab-Factoring_the_structure_of_a_thesaurus_into_asemantic_classification_decision-COLING2002.pdf(Accessed
15 D.A.Lindberg and B.L.Humphreys.The UMLS knowledge sources:Tools for building better user interface.In Proceedings of the Fourteenth Annual Symposium on Computer Applications in Medical Care,LosAlamitos,CA:Institute of Electrical and Electronics Engineers,1990,11(4)-(7):121-125
16A.T.McCray and W.T.Hole.The scopeandstructure of the first version of the UMLS semantic network.In Proceedings of the Fourteenth Annual Symposium on Computer Applicationsin Med
ical Care,Los Alamitos,CA:Institute of Electrical and Electronics Engineers,1990,11(4)-(7):126-130

[1] Shan Xiaohong,Wang Chunwen,Liu Xiaoyan,Han Shengxi,Yang Juan. Identifying Lead Users in Open Innovation Community from Knowledge-based Perspectives[J]. 数据分析与知识发现, 2021, 5(9): 85-96.
[2] Xu Zengxulin, Xie Jing, Yu Qianqian. Designing New Evaluation Model for Talents[J]. 数据分析与知识发现, 2021, 5(8): 122-131.
[3] Chai Qingfeng, Shi Linyan, Mei Shan, Xiong Haitao, He Huixin. Extracting Knowledge Elements of Sci-Tech Literature Based on Artificial and Machine Features[J]. 数据分析与知识发现, 2021, 5(8): 132-144.
[4] Su Qiang, Hou Xiaoli, Zou Ni. Predicting Surgical Infections Based on Machine Learning[J]. 数据分析与知识发现, 2021, 5(8): 65-75.
[5] Chen Xingyue, Ni Liping, Ni Zhiwei. Extracting Financial Events with ELECTRA and Part-of-Speech[J]. 数据分析与知识发现, 2021, 5(7): 36-47.
[6] Xie Hao,Mao Jin,Li Gang. Sentiment Classification of Image-Text Information with Multi-Layer Semantic Fusion[J]. 数据分析与知识发现, 2021, 5(6): 103-114.
[7] Wang Xiwei,Jia Ruonan,Wei Yanan,Zhang Liu. Clustering User Groups of Public Opinion Events from Multi-dimensional Social Network[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[8] Ma Yingxue,Zhao Jichang. Patterns and Evolution of Public Opinion on Weibo During Natural Disasters: Case Study of Typhoons and Rainstorms[J]. 数据分析与知识发现, 2021, 5(6): 66-79.
[9] Gao Yilin,Min Chao. Comparing Technology Diffusion Structure of China and the U.S. to Countries Along the Belt and Road[J]. 数据分析与知识发现, 2021, 5(6): 80-92.
[10] Song Ruoxuan,Qian Li,Du Yu. Identifying Academic Creative Concept Topics Based on Future Work of Scientific Papers[J]. 数据分析与知识发现, 2021, 5(5): 10-20.
[11] Zhang Guobiao,Li Jie. Detecting Social Media Fake News with Semantic Consistency Between Multi-model Contents[J]. 数据分析与知识发现, 2021, 5(5): 21-29.
[12] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[13] Li Feifei,Wu Fan,Wang Zhongqing. Sentiment Analysis with Reviewer Types and Generative Adversarial Network[J]. 数据分析与知识发现, 2021, 5(4): 72-79.
[14] Lv Xueqiang,Luo Yixiong,Li Jiaquan,You Xindong. Review of Studies on Detecting Chinese Patent Infringements[J]. 数据分析与知识发现, 2021, 5(3): 60-68.
[15] Chang Chengyang,Wang Xiaodong,Zhang Shenglei. Polarity Analysis of Dynamic Political Sentiments from Tweets with Deep Learning Method[J]. 数据分析与知识发现, 2021, 5(3): 121-131.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938