Please wait a minute...
New Technology of Library and Information Service  2006, Vol. 22 Issue (1): 3-9    DOI: 10.11925/infotech.1003-3513.2006.01.02
article Current Issue | Archive | Adv Search |
SKOS Core: Simple Knowledge Organisation for the Web
Alistair Miles1  Brian Matthews1  Michael Wilson1  Dan Brickley2
1(CCLRC Rutherford Appleton Laboratory, UK)
2(World Wide Web Consortium)
Export: BibTeX | EndNote (RIS)      

This paper introduces SKOS Core, an RDF vocabulary for expressing the basic structure and content of concept schemes (thesauri, classification schemes, subject heading lists, taxonomies, terminologies, glossaries and other types of controlled vocabulary).  SKOS Core is published and maintained by the W3C Semantic Web Best Practices and Deployment Working Group.  The main purpose of this paper is to provide an initial basis for establishing clear recommendations for the use of SKOS Core and DCMI Metadata Terms in combination.  Also discussed are management policies for SKOS Core and other RDF vocabularies, and the relationship between a “SKOS concept scheme” and an “RDFS/OWL Ontology”.

Key wordsKnowledge organization systems      KOS      Taxonomies      Thesauri      Classification schemes      Glossaries      RDF      OWL      Semantic Web      Metadata vocabularies     
Received: 08 November 2005      Published: 25 January 2006
Corresponding Authors: Alistair Miles     E-mail:
About author:: Alistair Miles,Brian Matthews,Michael Wilson,Dan Brickley

Cite this article:

Alistair Miles,Brian Matthews,Michael Wilson,Dan Brickley. SKOS Core: Simple Knowledge Organisation for the Web. New Technology of Library and Information Service, 2006, 22(1): 3-9.

URL:     OR

[1] Shan Xiaohong,Wang Chunwen,Liu Xiaoyan,Han Shengxi,Yang Juan. Identifying Lead Users in Open Innovation Community from Knowledge-based Perspectives[J]. 数据分析与知识发现, 2021, 5(9): 85-96.
[2] Li Wenna,Zhang Zhixiong. Research on Knowledge Base Error Detection Method Based on Confidence Learning[J]. 数据分析与知识发现, 2021, 5(9): 1-9.
[3] Lu Yunmeng,Liu Tiezhong. Diffusion Model for Tacit Knowledge of Scientific Cooperation Network Based on Relevance: Case Study of Major Sci-Tech Projects[J]. 数据分析与知识发现, 2021, 5(9): 10-20.
[4] Zhou Yang,Li Xuejun,Wang Donglei,Chen Fang,Peng Lijuan. Visualizing Knowledge Graph for Explosive Formula Design[J]. 数据分析与知识发现, 2021, 5(9): 42-53.
[5] Chai Qingfeng, Shi Linyan, Mei Shan, Xiong Haitao, He Huixin. Extracting Knowledge Elements of Sci-Tech Literature Based on Artificial and Machine Features[J]. 数据分析与知识发现, 2021, 5(8): 132-144.
[6] Shen Kejie, Huang Huanting, Hua Bolin. Constructing Knowledge Graph with Public Resumes[J]. 数据分析与知识发现, 2021, 5(7): 81-90.
[7] Ruan Xiaoyun,Liao Jianbin,Li Xiang,Yang Yang,Li Daifeng. Interpretable Recommendation of Reinforcement Learning Based on Talent Knowledge Graph Reasoning[J]. 数据分析与知识发现, 2021, 5(6): 36-50.
[8] Lu Linong,Zhu Zhongming,Zhang Wangqiang,Wang Xiaochun. Cross-database Knowledge Integration and Fingerprint of Institutional Repositories with Lingo3G Clustering Algorithm[J]. 数据分析与知识发现, 2021, 5(5): 127-132.
[9] Li He,Liu Jiayu,Li Shiyu,Wu Di,Jin Shuaiqi. Optimizing Automatic Question Answering System Based on Disease Knowledge Graph[J]. 数据分析与知识发现, 2021, 5(5): 115-126.
[10] Dai Bing,Hu Zhengyin. Review of Studies on Literature-Based Discovery[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[11] Shi Xiang,Liu Ping. Extraction and Representation of Domain Knowledge with Semantic Description Model and Knowledge Elements——Case Study of Information Retrieval[J]. 数据分析与知识发现, 2021, 5(4): 123-133.
[12] Li Ming, Li Ying, Zhou Qing, Wang Jun. Analyzing Knowledge Demand and Supply of Community Question Answering with TF-PIDF[J]. 数据分析与知识发现, 2021, 5(2): 106-115.
[13] Yu Chuanming, Zhang Zhengang, Kong Lingge. Comparing Knowledge Graph Representation Models for Link Prediction[J]. 数据分析与知识发现, 2021, 5(11): 29-44.
[14] Hua Bin, Wu Nuo, He Xin. Integrating Expert Reviews for Government Information Projects with Knowledge Fusion[J]. 数据分析与知识发现, 2021, 5(10): 124-136.
[15] Chen Shiji, Qiu Junping, Yu Bo. Topic Analysis of LIS Big Data Research with Overlay Mapping[J]. 数据分析与知识发现, 2021, 5(10): 51-59.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938