Please wait a minute...
New Technology of Library and Information Service  2006, Vol. 22 Issue (1): 59-61    DOI: 10.11925/infotech.1003-3513.2006.01.11
Current Issue | Archive | Adv Search |
Research for Texture Analysis in Content-Based Image Retrieval
Yuan Fuyong   Wang Haixia   Yang Zhiqiu
(The College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004,China)
Export: BibTeX | EndNote (RIS)      

Firstly the article introduces three common texture analysis methods in the content-based image retrieval。A new algorithm which is called run-length accumulating algorithm is presented based on the run-length statistic algorithm. We develop a texture-based image retrieval system. The experiment proves that run-length accumulating algorithm reflects texture feature of image more precisely than run-length statistic algorithm.

Key wordsImage retrieval      Texture feature      Texture analysis      Run-length     
Received: 22 September 2005      Published: 25 January 2006


Corresponding Authors: Yuan Fuyong     E-mail:
About author:: Yuan Fuyong,Wang Haixia,Yang Zhiqiu

Cite this article:

Yuan Fuyong,Wang Haixia,Yang Zhiqiu. Research for Texture Analysis in Content-Based Image Retrieval. New Technology of Library and Information Service, 2006, 22(1): 59-61.

URL:     OR

3Wu P, Manjunath B S, Newsam, et al. Texture descriptor for browsing and similarity retrieval. Signal Processing, 2000,16(1-2):33-43
7Dengsheng Zhang. Improving Image Retrieval Performance by Using Both Color and Texture Features. In Proc. of the Third IEEE International Conference on Image and Graphics (ICIG’04),2004.

[1] Wu Kun, Xie Xiaqing, Bai Quanwei, Wu Xu. Implementation and Application of Image Retrieval Technology in “Classic Reading” Teaching System[J]. 现代图书情报技术, 2014, 30(5): 90-95.
[2] Fang Naiwei, Lv Xueqiang, Zhang Dan. Mechanical Design Image Retrieval with Combined Geometrical Features[J]. 现代图书情报技术, 2013, 29(1): 43-49.
[3] Cheng Xiufeng, Zhu Song, Xia Lixin. Design and Application of Distributed Image Retrieval Based on Color Model to Histogram Conversion[J]. 现代图书情报技术, 2011, 27(5): 42-48.
[4] Cao Mei,Zhu Xuefang. Research Progress on User Image Descriptions[J]. 现代图书情报技术, 2009, 25(12): 31-36.
[5] Zhao Ying,Liu Jiajia . Remote Sensing Image Retrieval Based on Bayes Classification[J]. 现代图书情报技术, 2006, 1(5): 36-39.
[6] Huang Kun,Lai Maosheng . A Study on Kansei Engineering and Its Application in Image Retrieval[J]. 现代图书情报技术, 2006, 1(5): 31-35.
[7] Zhou Ning,Yang Chuanzhi,Wu Jiaxin. A Method of Image Index and Retrieval Using XML[J]. 现代图书情报技术, 2005, 21(9): 32-35.
[8] Wu Jiaxin,Zhou Ning,Zhang Shaolong. The Database Approach for Image Indexing and Retrieval[J]. 现代图书情报技术, 2005, 21(7): 11-14.
[9] Huang Kun,Lai Maosheng. Research on the Techniques of Trademark Image Retrieval[J]. 现代图书情报技术, 2004, 20(4): 32-36.
[10] Meng Xiangzeng,Zhong Yixin. Images Retrieval Based on Semantic in WWW[J]. 现代图书情报技术, 2004, 20(3): 35-37.
[11] Xiong Huixiang. Development Direction of Content Based Image Retrieval[J]. 现代图书情报技术, 2004, 20(12): 32-35.
[12] Kong Tao,Lai Maosheng. Meaning Association-Based Chinese Image Search Engine[J]. 现代图书情报技术, 2002, 18(3): 63-65.
[13] Wang Xin. WWW-Based Image Retrieval Techniques[J]. 现代图书情报技术, 2002, 18(3): 70-73.
[14] Wen Yanping. Research on Content-based Image Retrieval System[J]. 现代图书情报技术, 2001, 17(1): 45-47.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938