Please wait a minute...
New Technology of Library and Information Service  2006, Vol. 1 Issue (8): 65-68    DOI: 10.11925/infotech.1003-3513.2006.08.14
Current Issue | Archive | Adv Search |
Application of the Improving Data Mining Technique in the Individualized Service of the Digital Library
Lu Juemin    Zheng Yu
(Shanghai University Library, Shanghai  200072, China)
Export: BibTeX | EndNote (RIS)      

The Apriori algorithm is a classical method of association rules mining. Based on analysis of this theory, the paper provides an improved Apriori algorithm. The paper puts foward with algorithm combines HASH table technique and reduction of candidate item sets to enhance the usage efficiency of resources as well as the individualized service of the data library.

Key wordsApriori      Association rules      HASH table     
Received: 11 May 2006      Published: 25 August 2006


Corresponding Authors: Lu Juemin     E-mail:
About author:: Lu Juemin,Zheng Yu

Cite this article:

Lu Juemin,Zheng Yu . Application of the Improving Data Mining Technique in the Individualized Service of the Digital Library. New Technology of Library and Information Service, 2006, 1(8): 65-68.

URL:     OR

1Agrawal R , Imielinski T ,Swami A..  Mining Associations Rules Between Sets of Items in Large Databases. Proceedings of ACM SIGMOD Intl. Conf. on Management of Data Acm Press, 1993.207-216
2J.S.Park, M.S.Chen, and P.S.Yu. An effective hash-based algorithm for mining association rules. ACM SIGMOD Record ACM Press, 1995. 175-186
3李绪成,王保保. 挖掘关联规则中Apriori算法的一种改进.计算机工程,2002,7(28):104-105
4魏育辉,潘洁. 图书流通数据关联挖掘量化分析法. 现代情报,2005(11):108-110

[1] Li Tiejun,Yan Duanwu,Yang Xiongfei. Recommending Microblogs Based on Emotion-Weighted Association Rules[J]. 数据分析与知识发现, 2020, 4(4): 27-33.
[2] Yong Zhang,Shuqing Li,Yongshang Cheng. Mining Algorithm for Weighted Association Rules Based on Frequency Effective Length[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
[3] Li Changbing,Pang Chongpeng,Li Meiping. Extracting Product Features with Weight-based Apriori Algorithm[J]. 数据分析与知识发现, 2017, 1(9): 83-89.
[4] Wei Xing,Hu Dehua,Yi Minhan,Zhu Qizhen,Zhu Wenjie. Extracting Disease-Gene-Drug Correlations Based on Data Cube[J]. 数据分析与知识发现, 2017, 1(10): 94-104.
[5] Guangce Ruan, Lei Xia. Mining Document Topics Based on Association Rules[J]. 数据分析与知识发现, 2016, 32(12): 50-56.
[6] Du Siqi, Li Honglian, Lv Xueqiang. Research of Chinese Chunk Parsing in Application of the Product Feature Extraction[J]. 现代图书情报技术, 2015, 31(9): 26-30.
[7] Wang Yong, Zhang Qin, Yang Xiaojie. Research on the Method of Extracting Features from Chinese Product Reviews on the Internet[J]. 现代图书情报技术, 2013, (12): 70-73.
[8] Lu Yonghe, Cao Lichao. Books Recommended Model Based on Association Rules Comprehensive Evaluation[J]. 现代图书情报技术, 2011, 27(2): 81-86.
[9] Chen Aiying Qin Zongrong. Data Mining of Subject Words for Bibliographic Database in Small and Medium-sized Libraries Based on FP-tree[J]. 现代图书情报技术, 2010, 26(7/8): 114-119.
[10] Teng Guangqing,Bi Qiang. Usage-based Market Segmentation of Digital Library Users Based on Concept Lattice ——Association Rule Mining of Digital Library Users’ Usage[J]. 现代图书情报技术, 2010, 26(3): 8-12.
[11] Xu Jiali,Chen Jia. A Fast Personalized Bibliographic Recommendation Method[J]. 现代图书情报技术, 2010, 26(2): 79-84.
[12] Ge Dengke,WangYamin. Discovery of Spatial Association Rules Based on GIS[J]. 现代图书情报技术, 2009, 25(7-8): 97-101.
[13] Chen Yanhong,Huang Mingxuan. Query Expansion of Local Feedback Based on Improved Apriori Algorithm[J]. 现代图书情报技术, 2007, 2(9): 84-87.
[14] Yang Mu,Zhou Jiliu,Hu Yanmei. Associate Data Mining Method Research Based on Grid System[J]. 现代图书情报技术, 2007, 2(7): 59-62.
[15] Huang Mingxuan,Chen Yanhong,Zhang Shichao. Study on Query Expansion Model Based on Association Rules Mining[J]. 现代图书情报技术, 2007, 2(10): 47-51.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938