Please wait a minute...
New Technology of Library and Information Service  2006, Vol. 1 Issue (10): 30-33    DOI: 10.11925/infotech.1003-3513.2006.10.07
Current Issue | Archive | Adv Search |
Towards Context Query Information Extraction Based on Single Document
Hang Yueqin1    Yao Ying1    Shen Jie2 
1(Institute of Computer Science and Technology, Nantong University, Nantong 226006, China)
2(Department of Computer Science and Engineering, College of Information Engineering, Yangzhou University, Yangzhou 225009, China)
Export: BibTeX | EndNote (RIS)      

Based on single document, this paper puts foward an approach in which global analysis is combined with local analysis is proposed to extract the information of the query. By global analysis, keywords are extracted from the whole document to reflect the user’s research preference. While in local analysis step, query is disambiguated by extracting keywords from the text that is around the marked query. The results of the experiment show that the method above can reflect the query information more comprehensive and improve the relevance of the information retrieval.

Key wordsSearch preference      Information extraction      Context information      Query expansion     
Received: 24 May 2006      Published: 25 October 2006


Corresponding Authors: Hang Yueqin     E-mail:
About author:: Hang Yueqin,Yao Ying,Shen Jie

Cite this article:

Hang Yueqin,Yao Ying,Shen Jie . Towards Context Query Information Extraction Based on Single Document. New Technology of Library and Information Service, 2006, 1(10): 30-33.

URL:     OR

1Steve Lawrence, Context in Web Search, Bulletin of the IEEE Computer Society Technical Committee on Data Engineering, 2000: 25-32
2Xuehua Shen,Chengxiang Zhai Exploiting Query History for Document Ranking in Interactive Information Retrieval,In : Proceedings of SIGIR'03 (Poster), 2003: 377-378
3Finkelstein L, Gabrilovich E, Matias Y, Rivlin E, Solan A, Wolfman G, Ruppin E.  Placing search in context: the concept revisited. ACM Transactions on Information Systems, 2002, 20(1): 116-131
4Mohammed A Razek, Claude Frasson, Marc Kaltenbach A Context-Based Information Agent for Supporting Intelligent Distance Learning Environments, Twelfth International World Wide Web Conference, Budapest, 2003
5Fürnkranz J. A study using n-grams features for text categorization Technical Report OEFAI-TR-98-30, 1998: 1-10
6Matsuo Y, Ishizuka M. Keyword Extraction from a Single Document using Word Co-occurrence Statistical Information, International Journal on Artificial Intelligence Tools, 2004, 13 (1): 157-169
7Kenneth Ward Church, Patrick Hanks Word association norms, mutual information and lexicography, In Proceeding of ACL 27, 1989: 76-83
8Porter M. An algorithm for suffix stripping Program, 1980, 14(3):130-137
9Alan Turing Computing machinery and intelligence, Mind 59, 1950: 433-460

[1] Tan Ying, Tang Yifei. Extracting Citation Contents with Coreference Resolution[J]. 数据分析与知识发现, 2021, 5(8): 25-33.
[2] Huang Mingxuan,Jiang Caoqing,Lu Shoudong. Expanding Queries Based on Word Embedding and Expansion Terms[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[3] Wang Yi,Shen Zhe,Yao Yifan,Cheng Ying. Domain-Specific Event Graph Construction Methods:A Review[J]. 数据分析与知识发现, 2020, 4(10): 1-13.
[4] Tao Yue,Yu Li,Zhang Runjie. Active Learning Strategies for Extracting Phrase-Level Topics from Scientific Literature[J]. 数据分析与知识发现, 2020, 4(10): 134-143.
[5] Zhiqiang Liu,Yuncheng Du,Shuicai Shi. Extraction of Key Information in Web News Based on Improved Hidden Markov Model[J]. 数据分析与知识发现, 2019, 3(3): 120-128.
[6] Chengzhi Zhang,Zheng Li. Extracting Sentences of Research Originality from Full Text Academic Articles[J]. 数据分析与知识发现, 2019, 3(10): 12-18.
[7] Mu Dongmei,Jin Shan,Ju Yuanhong. Finding Association Between Diseases and Genes from Literature Abstracts[J]. 数据分析与知识发现, 2018, 2(8): 98-106.
[8] Yin Cong,Zhang Liyi. Recommendation Algorithm for Post-Context Filtering Based on TF-IDF: Case Study of Catering O2O[J]. 数据分析与知识发现, 2018, 2(11): 28-36.
[9] Yufeng Duan,Sisi Huang. Information Extraction from Chinese Plant Species Diversity Description Text[J]. 现代图书情报技术, 2016, 32(1): 87-96.
[10] Liu Wei, Wang Xing, Song Peiyan. A Noise Cleaning Method for Synonym Extraction Results[J]. 现代图书情报技术, 2015, 31(6): 64-70.
[11] Liu Feng, Li Yu, Lv Xueqiang, Li Zhuo. Research on Query Topic Classification Method[J]. 现代图书情报技术, 2015, 31(4): 10-17.
[12] Jiang Chuntao. Automatic Annotation of Bibliographical References in Chinese Patent Documents[J]. 现代图书情报技术, 2015, 31(10): 81-87.
[13] Li Xiangdong, Huo Yayong, Huang Li. Study of Book Pages Automatic Identification and Bibliographic Information Extraction[J]. 现代图书情报技术, 2014, 30(4): 71-77.
[14] Liu Yajing, Wang Yanxi, Hao Dan, Zhou Jinhui. Study on the Methods of Institutional Repository Supporting Research Services[J]. 现代图书情报技术, 2014, 30(3): 1-7.
[15] Zhang Han, Liu Shuangmei. Comparative Analysis of Centrality Indices in Extracting Concepts from Semantic Predication Network——Based on Disease Treatment Research[J]. 现代图书情报技术, 2013, (6): 30-35.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938