Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (1): 40-43    DOI: 10.11925/infotech.1003-3513.2007.01.10
Current Issue | Archive | Adv Search |
A General Approach to Extracting Topical Information in HTML Pages
Xu Wen   Du Yuncheng    Li Yuqin   Shi Shuicai
(Chinese Information Processing Research Center,Beijing InformationScience & Technology University,Beijing 100101,China)
Export: BibTeX | EndNote (RIS)      

By researching how to extract the topical contents in different kinds of templates of Web pages, this paper introduces a new extraction methodology based on DOM. The approach transforms HTML documents into DOM trees. According to the method, the topical contents are extracted and topic-unrelated content are deleted. The result of the approach represents the HTML document which only contains the topic information.

Key wordsDOM      Information extraction      Partition      Correlativity     
Received: 09 October 2006      Published: 25 January 2007


Corresponding Authors: Xu Wen     E-mail:
About author:: Xu Wen,Du Yuncheng,Li Yuqin,Shi Shuicai

Cite this article:

Xu Wen,Du Yuncheng,Li Yuqin,Shi Shuicai . A General Approach to Extracting Topical Information in HTML Pages. New Technology of Library and Information Service, 2007, 2(1): 40-43.

URL:     OR

1Michael W Berry, Murray Browne. Understand Search Engines:Mathematical Modeling and Text Retrieval.Philadelphia:Society for Industrial and Applied Mathematics,1999.116
2Buyukkokten O,Garcia2Molina H,Paepcke A. Accordion summarization for end-game browsing on PDAs and cellular phones.In: Proc of ACM Conf on Human Factors in Computing Systems(CHI 2001). New York:ACM Press, 2001.213-220
3Yi L, Liu B,  Li X.Eliminating Noisy Information in Web Pages for Data Mining. Oct.17,2005)
4欧健文,董守斌,蔡斌.模板化网页主题信息的提取方法清华大学学报(自然科学版), 2005,45(1): 1743-1747
5Suhit Gupta, Gail Kaiser, David Neistadt, Peter Grimm, “DOM-based Content Extraction of HTML Documents”, 12th International World Wide Web Conference, 2003(5): 207-214
6孙承杰,关毅. 基于统计的网页正文信息抽取方法的研究 中文信息学报,2004(4):17-22
7Stenback J, Hegaret P L, Hors A L. Document Object Model (DOM ) Level 2 HTML Specification.,2003(Accessed Oct.17,2005)
8CyberNeko HTML Parser. doc/ html/ index.html(Accessed Oct.17,2005)

[1] Chen Jie,Ma Jing,Li Xiaofeng. Short-Text Classification Method with Text Features from Pre-trained Models[J]. 数据分析与知识发现, 2021, 5(9): 21-30.
[2] Shan Xiaohong,Wang Chunwen,Liu Xiaoyan,Han Shengxi,Yang Juan. Identifying Lead Users in Open Innovation Community from Knowledge-based Perspectives[J]. 数据分析与知识发现, 2021, 5(9): 85-96.
[3] Liu Yuanchen, Wang Hao, Gao Yaqi. Predicting Online Music Playbacks and Influencing Factors[J]. 数据分析与知识发现, 2021, 5(8): 100-112.
[4] Tan Ying, Tang Yifei. Extracting Citation Contents with Coreference Resolution[J]. 数据分析与知识发现, 2021, 5(8): 25-33.
[5] Chen Wenjie,Wen Yi,Yang Ning. Fuzzy Overlapping Community Detection Algorithm Based on Node Vector Representation[J]. 数据分析与知识发现, 2021, 5(5): 41-50.
[6] Cheng Bin,Shi Shuicai,Du Yuncheng,Xiao Shibin. Keyword Extraction for Journals Based on Part-of-Speech and BiLSTM-CRF Combined Model[J]. 数据分析与知识发现, 2021, 5(3): 101-108.
[7] Zheng Xinman, Dong Yu. Constructing Degree Lexicon for STI Policy Texts[J]. 数据分析与知识发现, 2021, 5(10): 81-93.
[8] Zhao Ping,Sun Lianying,Tu Shuai,Bian Jianling,Wan Ying. Identifying Scenic Spot Entities Based on Improved Knowledge Transfer[J]. 数据分析与知识发现, 2020, 4(5): 118-126.
[9] Li Chengliang,Zhao Zhongying,Li Chao,Qi Liang,Wen Yan. Extracting Product Properties with Dependency Relationship Embedding and Conditional Random Field[J]. 数据分析与知识发现, 2020, 4(5): 54-65.
[10] Qi Ruihua,Jian Yue,Guo Xu,Guan Jinghua,Yang Mingxin. Sentiment Analysis of Cross-Domain Product Reviews Based on Feature Fusion and Attention Mechanism[J]. 数据分析与知识发现, 2020, 4(12): 85-94.
[11] Peng Chen,Lv Xueqiang,Sun Ning,Zang Le,Jiang Zhaocai,Song Li. Building Phrase Dictionary for Defective Products with Convolutional Neural Network[J]. 数据分析与知识发现, 2020, 4(11): 112-120.
[12] Wang Sili,Zhu Zhongming,Yang Heng,Liu Wei. Automatically Identifying Hypernym-Hyponym Relations of Domain Concepts with Patterns and Projection Learning[J]. 数据分析与知识发现, 2020, 4(11): 15-25.
[13] Qin Chenglei,Zhang Chengzhi. Recognizing Structure Functions of Academic Articles with Hierarchical Attention Network[J]. 数据分析与知识发现, 2020, 4(11): 26-42.
[14] Wang Yi,Shen Zhe,Yao Yifan,Cheng Ying. Domain-Specific Event Graph Construction Methods:A Review[J]. 数据分析与知识发现, 2020, 4(10): 1-13.
[15] Tao Yue,Yu Li,Zhang Runjie. Active Learning Strategies for Extracting Phrase-Level Topics from Scientific Literature[J]. 数据分析与知识发现, 2020, 4(10): 134-143.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938