Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (3): 25-28    DOI: 10.11925/infotech.1003-3513.2007.03.05
Current Issue | Archive | Adv Search |
Toward User-Document Matrix Based User Clustering for Collaborative Recommendation
Yan Duanwu  Luo Shengyang  Cheng Xiao
(School of Economics & Management, Nanjing University of Scienceand Technology,Nanjing 210094, China)
Export: BibTeX | EndNote (RIS)      

According to the needs of personalized recommendation service and the problem of high-dimension and sparse user-document visited data, an inter-user comparation based dimension reduction method and K-hirachical clustering arithmetic is utilized to analyze the user clustering procedure based on users’ resources evaluation data colloction. On the basis of those, an experimental system of user clustering is also designed and developed by applying Java open source technology.

Key wordsCollaborative recommendation      User clustering      Vector space model      Data dimension reduction     
Received: 22 January 2007      Published: 25 March 2007


Corresponding Authors: Yan Duanwu     E-mail:
About author:: Yan Duanwu,Luo Shengyang,Cheng Xiao

Cite this article:

Yan Duanwu,Luo Shengyang,Cheng Xiao . Toward User-Document Matrix Based User Clustering for Collaborative Recommendation. New Technology of Library and Information Service, 2007, 2(3): 25-28.

URL:     OR

1Terveen L, Hill W, Amento B, et al. A System for Sharing Recommendations. Communications of the ACM, 1997, 40(3): 59-62
2Rucker J, Polanco M J. Siteseer: Personalized Navigation for the Web. Communications of the ACM, 1997, (40) 3: 73-75
3Konsta J A, Miller B N, Maltz D, et al. GroupLens: Applying Collaborative Filtering to Usenet News. Communications of the ACM, 1997, 40(3): 77-87
8Jiawei Han,Micheline.数据挖掘概念与技术(第1版).北京:机械工业出版社,2001

[1] Wang Xiwei,Jia Ruonan,Wei Yanan,Zhang Liu. Clustering User Groups of Public Opinion Events from Multi-dimensional Social Network[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[2] Huiying Gao,Tian Wei,Jiawei Liu. Friend Recommendation Based on User Clustering and Dynamic Interaction Trust Relationship[J]. 数据分析与知识发现, 2019, 3(10): 66-77.
[3] Zhao Ya’nan,Wang Yuqing. Research on Collaborative Filtering Traveling Products Recommendation Algorithm Based on IUNCF[J]. 数据分析与知识发现, 2018, 2(7): 63-71.
[4] Xiong Huixiang,Ye Jiaxin,Jiang Wuxuan. Clustering Social Tags with Improved DBSCAN Algorithm[J]. 数据分析与知识发现, 2018, 2(12): 77-88.
[5] Bai Rujiang,Leng Fuhai,Liao Junhua. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
[6] Wang Xiaoyun, Qian Lu, Huang Shiyou. Collaborative Filtering Recommendation Model Based on Rough User Clustering[J]. 现代图书情报技术, 2015, 31(1): 45-51.
[7] Tan Xueqing, Zhou Tong, Luo Lin. A Text Classification Algorithm Based on the Average Category Similarity[J]. 现代图书情报技术, 2014, 30(9): 66-73.
[8] Li Xiangdong, Liao Xiangpeng, Huang Li. Research and Implementation of Bibliographic Information Classification System in LDA Model[J]. 现代图书情报技术, 2014, 30(5): 18-25.
[9] Hu Jiming, Xiao Lu. Semantic Incremental Improvement on Vector Space Model for Text Modeling[J]. 现代图书情报技术, 2014, 30(10): 49-55.
[10] Lu Yonghe, He Xinyu. An Application of Sharpen Gaussian Template in a Text Feature Weight Adjustment Methodology[J]. 现代图书情报技术, 2012, (12): 39-44.
[11] Zhang Zhiping Li Linna. Design and Implementation of Related Document Recommendation in Document Retrieval System of NSTL[J]. 现代图书情报技术, 2010, 26(7/8): 110-113.
[12] Zhang Shunrui, You Hongliang. Chinese People Name Disambiguation by Hierarchical Clustering[J]. 现代图书情报技术, 2010, 26(11): 64-68.
[13] Yu Xitian,Wan Lili,Hu Tiejun,Li Danya. Research and Implementation of Related Articles Database Based on Vector Space Model[J]. 现代图书情报技术, 2008, 24(6): 61-66.
[14] Qiu Yuhong,Guo Jijun. Application of Vector Space Model in the Similarity Research of Medical Literature[J]. 现代图书情报技术, 2007, 2(7): 63-67.
[15] Liu Hua . A Text Categorization System with C#[J]. 现代图书情报技术, 2007, 2(3): 43-45.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938