Please wait a minute...
New Technology of Library and Information Service  2007, Vol. 2 Issue (6): 52-55    DOI: 10.11925/infotech.1003-3513.2007.06.12
Current Issue | Archive | Adv Search |
User Profile Mining of Combining Web Behavior and Content Analysis
Zhang Yulian   Wang Quan
(College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004,China)
Export: BibTeX | EndNote (RIS)      

Facing massive information from Internet, this paper proposes a method that can acquire user interest profile and update user interest profile to realize the personalized information service based on user’s interest as well as possible. This method does not need to provide explicitly the information user’s interested in. It only needs the actions and contents when users visit and browse Web pages to obtain useful information, subsequently, using those information to establish and update user interest profile. This profile can describe user’s interest type and interest degree well and enhance the personalized information service efficiency.

Key wordsPersonalization      Search engine      User profile     
Received: 21 March 2007      Published: 25 June 2007


Corresponding Authors: Zhang Yulian     E-mail:
About author:: Zhang Yulian,Wang Quan

Cite this article:

Zhang Yulian,Wang Quan. User Profile Mining of Combining Web Behavior and Content Analysis. New Technology of Library and Information Service, 2007, 2(6): 52-55.

URL:     OR

1The Weeks Group, A Framework for Competitive Intelligence. Mar.10,2007)
2Jansen B, Spink A,  Saracevic T. Real Life, Real Users, and Real Needs: A Study and Analysis of User Queries on the Web.Information Processing and Management,2000,36(2): 207-227
3Fox S. Pew Internet Project Data Memo. Mar.10,2007)
4Deolasee P, et al. Adaptive Push-Pull: Disseminating Dynamic Web Data,Proceeding of the 10th International WWW Conference.Hong Kong,2001:265-274
5Fuld & Company, Intelligence Software Report 2002. Mar.10,2007)
6海量智能分词研究版. Mar.10,2007)
7计算所汉语词法分析系统ICTCLAS. Mar.10,2007)
8Negnevitsiky M. 人工智能:智能系统指南.北京:机械工业出版社,2006
9Liu L, et al. Information Monitoring on the Web: A Scalable Solution.World Wide Web Journal,2002,5(12): 263-304
10Boley D, Gini M, Gross R,  Han E,  Hastings K, Karypis G,  Kumar V,  Bamshad M,  Moore J. Document Categorization and Query Generation on the World Wide Web Using Webace. Journal of Artificial Intelligence Review,1999,13(5-6):365-391
11Pazzani M,  Muramatsu J,  Billsus D. Syskill & Webert: Identifying Interesting Web Sites.Proceedings of the 1996 National Conference on Artificial Intelligence (AAAI-96), Portland, 1996
12Godoy G, Amandi A. A User Profiling Architecture for Textual-Based Agents. Proceedings of the Fourth Argentine Symposium on Artificial Intelligence, Sante Fe, Argentina, 2002
13Douglis F, et al. The AT&T Internet Difference Engine: Tracking and Viewing Changes on the Web.World Wide Web, 1998,1(1):27-44
14电子政务工程服务网. Mar.10,2007)
15Google の秘密 - PageRank 徹底解説. Mar.10,2007)
16庞剑锋,卜东波等.基于向量空间模型的文本自动分类系统的研究与实现.计算机应用研究, 2001,18(9):23-26

[1] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[2] Jing Xie,Li Qian,Hongbo Shi,Beibei Kong,Jiying Hu. Designing Framework for Precise Service of Scholarly Big Data[J]. 数据分析与知识发现, 2019, 3(1): 63-71.
[3] Luo Wenxin,Chen Chong,Deng Siyi. Detecting Disease Associations with Word2Vec from Consumer Health Information[J]. 现代图书情报技术, 2016, 32(9): 78-87.
[4] Liu Tong,Ni Weijian,Liu Mei. Identifying Terminology from Search Engine Query Logs[J]. 现代图书情报技术, 2016, 32(2): 25-33.
[5] Tong Guoping, Sun Jianjun. User Behavior Analysis Based on Search Engine Log[J]. 现代图书情报技术, 2015, 31(7-8): 80-88.
[6] Wang Xiwei, Zhao Dan, Yang Mengqing, Wei Junwei. Indices and Empirical Research on Search Engine Optimization of the Industry Websites: An Analysis from the Perspective of Information Ecology[J]. 现代图书情报技术, 2015, 31(3): 75-83.
[7] Chen Yong, Li Honglian, Lv Xueqiang. Analysis for the Search Behavior of Web Users[J]. 现代图书情报技术, 2014, 30(12): 10-17.
[8] Li Shuqing, Wang Jianqiang. A Visualization and Recognition Method of Readers’ Interests with the Analysis of the Characteristics of Borrowing Time[J]. 现代图书情报技术, 2013, (5): 46-53.
[9] Li Shuqing, Liu Xiaoqian. The Matching Algorithm of Heterogeneous User Personalized Profile Based on Centripetal Spreading Weighted XML Model[J]. 现代图书情报技术, 2012, 28(5): 32-40.
[10] Zhang Qi, Zhang Yinghua. Research on an Approach of Context Aware Collaborative Recommend for Scientific & Technical Literatures[J]. 现代图书情报技术, 2012, 28(2): 10-17.
[11] Zhang Liyi, Chen Mingying. Research on the Sensitivity and Specificity of Search Engines[J]. 现代图书情报技术, 2011, 27(7/8): 41-46.
[12] Zhang Yunzhong, Yang Meng, Xu Baoxiang. Research on FCA-based User Profile Mining for Folksonomy[J]. 现代图书情报技术, 2011, 27(6): 72-78.
[13] Wang Jimin, Lilei Mingzi, Zhang Peng. Co-authorship Network Analysis in the Research Field of Search Engine’s Log Mining[J]. 现代图书情报技术, 2011, 27(4): 58-63.
[14] Zhang Hongbin, Cao Yiqin. A New Classifier Design in a Topic Search Engine by Combining Multi-layer Classifier with Naive Bayes Classification Model[J]. 现代图书情报技术, 2011, 27(3): 73-79.
[15] Zhou Zhicheng. Real-Time Search Suggestions Based on the Clustering of the User’ s Query Intent[J]. 现代图书情报技术, 2011, 27(2): 87-93.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938