Please wait a minute...
New Technology of Library and Information Service  2008, Vol. 24 Issue (2): 69-75    DOI: 10.11925/infotech.1003-3513.2008.02.13
Current Issue | Archive | Adv Search |
A Research on Retrieval Results Clustering and Relevant Recommendation in Digital Library
Ji Yonghui
(Department of Information Management, Nanjing University, Nanjing 210093, China)
Export: BibTeX | EndNote (RIS)      

This paper discusses how to implement the clustering of document retrieval results, the relevant recommendation of related documents, related authors & organizations and related key-words. The author presents how to visualize the results of clustering and recommendation in graph on the documents retrieval platform of digital library, which can increase the users’ satisfaction.

Key wordsDigital library      Documents retrieval      Clustering      Rrelevant recommendation      Visualization      GDI+      K-Means algorithm     
Received: 30 October 2007      Published: 25 February 2008


Corresponding Authors: Ji Yonghui     E-mail:
About author:: Ji Yonghui

Cite this article:

Ji Yonghui. A Research on Retrieval Results Clustering and Relevant Recommendation in Digital Library. New Technology of Library and Information Service, 2008, 24(2): 69-75.

URL:     OR

[1] Vivísimo. Inc - Enterprise Search, Federated Search and Clustering[EB/OL].[2007-11-08].
[2] Computer and Information Science Papers CiteSeer Publications Research Index[EB/OL].[2007-11-08].
[3] CNKI知识网络知识服务平台[EB/OL].[2007-11-08].
[4] C J  van Rijsbergen. Information Retrieval[M]. Second edition. London: Buttersworth, 1989.
[5] Jiawei Han, Micheline Kamber. 数据挖掘:概念与技术[M]. 孟晓峰,范明(译). 北京:机械工业出版社,2001.
[6] Salton G, Wong A, Yang C S. A Vector Space Model for Automatic Indexing[J]. Communications of the ACM, 1975(18):613 -620.
[7] Jain A K, Murty M N, Flynn P J. Data Clustering: A Review[J]. ACM Computing Surveys, 1999,31(3), 264-323.
[8] 行小帅,潘进,焦李成.基于免疫规划的K-Means聚类算法[J].计算机学报,2003,26(5):605-610.
[9] 周昭涛.文本聚类分析效果评价及文本表示研究[D].北京:中国科学院研究生院,2005.
[10] 刘远超,王晓龙,刘秉权.一种改进的K-Means文档聚类初值选择算法[J].高科技通讯,2006,16(1):11-15.
[11] 万小军,杨建武,陈晓鸥.文档聚类中K-means算法的一种改进算法[J].计算机工程,2003,29(2):102-103.
[12] 马文峰,高凤荣,王珊.论数字图书馆个性化信息推荐系统[J].现代图书情报技术,2003(2):16-18.
[13] Sarwar B M, Karypis S G, Konstan J A, et al. Analysis of Recommendation Algorithms for E-commerce[C]. Proceedings of the ACM EC’00 Conference. Minneapolis, MN.,2000:158-167.
[14] Nahum D Gershon, Stephen G Eick. Information Visualization[J]. IEEE Computer Graphics and Applications. 1997, 17(4):29-31.
[15] Mahesh Chand. GDI+图形程序设计[M]. 韩江(译).北京:电子工业出版社,2005.

[1] Wang Ruolin, Niu Zhendong, Lin Qika, Zhu Yifan, Qiu Ping, Lu Hao, Liu Donglei. Disambiguating Author Names with Embedding Heterogeneous Information and Attentive RNN Clustering Parameters[J]. 数据分析与知识发现, 2021, 5(8): 13-24.
[2] Wang Xiwei,Jia Ruonan,Wei Yanan,Zhang Liu. Clustering User Groups of Public Opinion Events from Multi-dimensional Social Network[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[3] Lu Linong,Zhu Zhongming,Zhang Wangqiang,Wang Xiaochun. Cross-database Knowledge Integration and Fingerprint of Institutional Repositories with Lingo3G Clustering Algorithm[J]. 数据分析与知识发现, 2021, 5(5): 127-132.
[4] Zhang Mengyao, Zhu Guangli, Zhang Shunxiang, Zhang Biao. Grouping Microblog Users of Trending Topics Based on Sentiment Analysis[J]. 数据分析与知识发现, 2021, 5(2): 43-49.
[5] Ding Hao, Ai Wenhua, Hu Guangwei, Li Shuqing, Suo Wei. A Personalized Recommendation Model with Time Series Fluctuation of User Interest[J]. 数据分析与知识发现, 2021, 5(11): 45-58.
[6] Yang Chen, Chen Xiaohong, Wang Chuhan, Liu Tingting. Recommendation Strategy Based on Users’ Preferences for Fine-Grained Attributes[J]. 数据分析与知识发现, 2021, 5(10): 94-102.
[7] Yu Fengchang,Cheng Qikai,Lu Wei. Locating Academic Literature Figures and Tables with Geometric Object Clustering[J]. 数据分析与知识发现, 2021, 5(1): 140-149.
[8] Wen Pingmei,Ye Zhiwei,Ding Wenjian,Liu Ying,Xu Jian. Developments of Named Entity Disambiguation[J]. 数据分析与知识发现, 2020, 4(9): 15-25.
[9] Wu Jinming,Hou Yuefang,Cui Lei. Automatic Expression of Co-occurrence Clustering Based on Indexing Rules of Medical Subject Headings[J]. 数据分析与知识发现, 2020, 4(9): 133-144.
[10] Xi Yunjiang, Du Diedie, Liao Xiao, Zhang Xuehong. Analyzing & Clustering Enterprise Microblog Users with Supernetwork[J]. 数据分析与知识发现, 2020, 4(8): 107-118.
[11] Yang Xu,Qian Xiaodong. Synchronous Clustering Algorithm for Social Networks Based on Improved Vicsek Model[J]. 数据分析与知识发现, 2020, 4(4): 119-128.
[12] Xiong Huixiang,Li Xiaomin,Li Yueyan. Group Recommendation Based on Attribute Mining of Book Reviews[J]. 数据分析与知识发现, 2020, 4(2/3): 214-222.
[13] Chen Ting,Wang Haiming,Wang Xiaomei. Detecting Funding Topics Evolutions with Visualization[J]. 数据分析与知识发现, 2020, 4(2/3): 60-67.
[14] Wei Jiaze,Dong Cheng,He Yanqing,Liu Zhihui,Peng Keyun. Detecting News Topics Based on Equalized Paragraph and Sub-topic Vector[J]. 数据分析与知识发现, 2020, 4(10): 70-79.
[15] Huaming Zhao,Li Yu,Qiang Zhou. Determining Best Text Clustering Number with Mean Shift Algorithm[J]. 数据分析与知识发现, 2019, 3(9): 27-35.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938