Please wait a minute...
New Technology of Library and Information Service  2008, Vol. 24 Issue (4): 39-43    DOI: 10.11925/infotech.1003-3513.2008.04.08
Current Issue | Archive | Adv Search |
Research and Implement of Semantic Search Technology Based on Ontology
Jiang Hua 1,2
1(College of Computer Science,Liaocheng University,Liaocheng  252059,China)
2(Department of Computer Science and Technology, University of Science and Technology of China, Hefei 230027,China)
Export: BibTeX | EndNote (RIS)      

Through computing the similarity and relevancy based on Ontology, the author uses semantic reasoning to make connotative semantics clear in order to  mine fully the information correlative with the search content. This paper implements the relevant information’s semantic fusion and improves the precision and recall.The method of computing semantic similarity and relevancy based on Ontology is studied and is proved feasible by implementing the semantic search method.

Key wordsOntology      Semantic Query      Semantic similarity      Semantic relevancy     
Received: 02 November 2007      Published: 25 April 2008


Corresponding Authors: Jiang Hua     E-mail:,
About author:: Jiang Hua

Cite this article:

Jiang Hua. Research and Implement of Semantic Search Technology Based on Ontology. New Technology of Library and Information Service, 2008, 24(4): 39-43.

URL:     OR

[1] Berners-Lee T, Hendler J.The Semantic Web[J].Scientific American, 2001, 284(5): 34-43.
[2] Gruber T.A Translation Approach to Portable Ontology Specifications[J].Knowledge Acquisition Acquisition,1993(5):199-200.
[3] 侯国锋.一个自然语言理解系统的设计和实现[J].计算机应用研究,2001(2):19-22.
[4] AQUA: An Ontology-driven Question Answering System[C]. AAAI Symposium on New Directions of Question Answering Stanford University, March 24-26, 2003.
[5] Zhao H, Huang C N, Li M, et al. Effective Tag Set Selection in Chinese Word Segmentation via Conditional Random Field Modeling[C]. The 20th Pacific Asia Conference on Language, Information and Computation (PACLIC-20), Wuhan, China, November 1-3, 2006.
[6] 张晨彧,穆斌.语义Web中的语义度量与本体映射[J].合肥工业大学学报(自然科学版), 2006,29(3):300-304.
[7] Forgy C L. Rete: A Fast Algorithm for the Many Pattern/many Object Pattern Match Problem[J].Artificial Intelligence,1982,19(1):17-37.

[1] Sheng Shu, Huang Qi, Yang Yang, Xie Qiwen, Qin Xinguo. Exchanging Chinese Medical Information Based on HL7 FHIR[J]. 数据分析与知识发现, 2021, 5(11): 13-28.
[2] Zeng Zhen,Li Gang,Mao Jin,Chen Jinghao. Data Governance and Domain Ontology of Regional Public Security[J]. 数据分析与知识发现, 2020, 4(9): 41-55.
[3] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[4] Shiqi Deng,Liang Hong. Constructing Domain Ontology for Intelligent Applications: Case Study of Anti Tele-Fraud[J]. 数据分析与知识发现, 2019, 3(7): 73-84.
[5] Zhu Fu,Yuefen Wang,Xuhui Ding. Semantic Representation of Design Process Knowledge Reuse[J]. 数据分析与知识发现, 2019, 3(6): 21-29.
[6] Guangshang Gao. A Survey of User Profiles Methods[J]. 数据分析与知识发现, 2019, 3(3): 25-35.
[7] Jiao Yan,Jing Ma,Kang Fang. Computing Text Semantic Similarity with Syntactic Network of Co-occurrence Distance[J]. 数据分析与知识发现, 2019, 3(12): 93-100.
[8] Ying Wang,Li Qian,Jing Xie,Zhijun Chang,Beibei Kong. Building Knowledge Graph with Sci-Tech Big Data[J]. 数据分析与知识发现, 2019, 3(1): 15-26.
[9] He Youshi,He Shufang. Sentiment Mining of Online Product Reviews Based on Domain Ontology[J]. 数据分析与知识发现, 2018, 2(8): 60-68.
[10] Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[11] Pang Beibei,Gou Juanqiong,Mu Wenxin. Extracting Topics and Their Relationship from College Student Mentoring[J]. 数据分析与知识发现, 2018, 2(6): 92-101.
[12] Ding Shengchun,Liu Menglu,Fu Zhu. Unified Multidimensional Model Based on Knowledge Flow in Conceptual Design[J]. 数据分析与知识发现, 2018, 2(2): 11-19.
[13] Tu Haili,Tang Xiaobo. Building Product Recommendation Model Based on Tags[J]. 数据分析与知识发现, 2017, 1(9): 28-39.
[14] Chen Erjing,Jiang Enbo. Review of Studies on Text Similarity Measures[J]. 数据分析与知识发现, 2017, 1(6): 1-11.
[15] Bai Rujiang,Leng Fuhai,Liao Junhua. An Improved Cosine Text Similarity Computing Method Based on Semantic Chunk Feature[J]. 数据分析与知识发现, 2017, 1(6): 56-64.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938