Please wait a minute...
New Technology of Library and Information Service  2008, Vol. 24 Issue (8): 24-30    DOI: 10.11925/infotech.1003-3513.2008.08.04
Current Issue | Archive | Adv Search |
A Research on the Methodological of Text Visualization
Zhao Qi 1,2  Zhang Zhixiong1  Sun Tan1
1 (National Science Library, Chinese Academy of Sciences, Beijing 100190, China)
2 (Graduate University of Chinese Academy of Sciences, Beijing 100049, China)
Export: BibTeX | EndNote (RIS)      

Text visualization is a method which uses computer technology to make a graphical show of the specific text resources. This paper analyzes the current text visualization characteristics through analysis of the typical text visualization system. There are four different classes of text visualization, including based on vocabulary, based on article, based on time series, based on topic which reflects the main text visualization techniques. The final part is about how text visualization used in the information environment now.

Key wordsText Visualization      Knowledge Expression      Topic Discovery     
Received: 16 June 2008      Published: 25 August 2008


Corresponding Authors: Zhao Qi     E-mail:
About author:: Zhao Qi,Zhang Zhixiong,Sun Tan

Cite this article:

Zhao Qi,Zhang Zhixiong,Sun Tan. A Research on the Methodological of Text Visualization. New Technology of Library and Information Service, 2008, 24(8): 24-30.

URL:     OR

[1] Wise J A, Pennock K,  Lantrip D, et al. Visualizing the Non-visual:Spatial Analysis and Interaction with Information from Text Documents [C]. Proceedings on Information Visualization 1995.
[2] Mladenic M G D. Visualization of News Articles [EB/OL].[2008-06-12].
[3] Hearst M A. TileBars:Visualization of Term Distribution Information in Full Text Information Access[C]. In:Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 1995:59-66.
[4] TileBars Examples [EB/OL].[2008-06-12].
[5] Weber W. Text Visualization-What Colors Tell About a Text[C]. In:Proceedings of the 11th International Conference Information Visualization, 2007:354-362.
[6] Leskovec J,Grobelnik M, Milic-Frayling N. Learning Sub-structures of Document Semantic Graphs for Document Summarization[C]. LinkKDD. 2004.
[7] Paley W B. TextArc:Showing Word Frequency and Distribution in Text[C]. IEEE Symposium on Information Visualization. 2002.
[8] TextArc - An Alternate Way to View a Text [EB/OL].[2008-06-12].
[9] Grobelnik M,Mladenic D. Text-Garden——Text-Mining Software Tools [EB/OL].[2008-06-12].
[10] Havre S, Hetzler B, Nowell L. ThemeRiverTM:In Search of Trends, Patterns, and Relationships [EB/OL].[2008-06-12].
[11] Plaisant C, Mushin R, Snyder A, et al. LifeLines:Using Visualization to Enhance Navigation and Analysis of Patient Records[J]. The Craft of Information Visualization:Readings and Reflections, 2003. 1(1):1-5.
[12] Battiato S, Gianpiero Di Blasi, Gallo G, et al. Theme Mountain:a SVG-based Visual Data Mining Tool [EB/OL].[2008-06-12].
[13] History Flow - Visualizing the Editing History of Wikipedia Pages [EB/OL].[2008-06-12].
[14] Viégas F B,  Wattenberg M,  Dave K. Studying Cooperation and Conflict Between Authors with History Flow Visualizations[C]. In:Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, 2004:575-582.
[15] Krishnan M, Bohn S, Cowley W, et al. Scalable Visual Analytics of Massive Textual Datasets[C] In:Parallel and Distributed Processing Symposium, IPDPS. 2007.
[16] IN-SPIRETM Visual Document Analysis [EB/OL].[2008-06-12].
[17] Aureka ThemeScape 9.2 User Guide [EB/OL].[2008-06-12].
[18] Miller N E, Wong P C, Brewster M, et al. TOPIC ISLANDSTM-A Wavelet-Based Text Visualization System[C]. In:Visualization’98. Proceedings. 1998:189-196.
[19] Rushall D A, Ilgen M R. DEPICT:Documents Evaluated as Pictures. Visualizing Information Using Context Vectors and Self-organizing Maps[C]. In:Proceedings of the 1996 IEEE Symposium on Information Visualization (INFOVIS ’96). 1996, IEEE Computer Society.

[1] Wu Jinming,Hou Yuefang,Cui Lei. Automatic Expression of Co-occurrence Clustering Based on Indexing Rules of Medical Subject Headings[J]. 数据分析与知识发现, 2020, 4(9): 133-144.
[2] Yanan Yang,Wenhui Zhao,Jian Zhang,Shen Tan,Beibei Zhang. Visualizing Policy Texts Based on Multi-View Collaboration[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[3] Tingxin Wen,Yangzi Li,Jingshuang Sun. News Hotspots Discovery Method Based on Multi Factor Feature Selection and AFOA/K-means[J]. 数据分析与知识发现, 2019, 3(4): 97-106.
[4] Tang Xiaobo, Qiu Xin. Research on Subject-Oriented High Quality Reviews Mining Model[J]. 现代图书情报技术, 2015, 31(7-8): 104-112.
[5] Ye Chuan, Ma Jing. Research on Topic Discovery Algoritm of Multimedia Microblog Comments Information[J]. 现代图书情报技术, 2015, 31(11): 51-59.
[6] Xu Xin, Hong Yunjia. Study on Text Visualization of Clustering Result for Domain Knowledge Base —— Take Knowledge Base of Chinese Cuisine Culture as the Object[J]. 现代图书情报技术, 2014, 30(10): 25-32.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938