Please wait a minute...
New Technology of Library and Information Service  2008, Vol. 24 Issue (9): 36-40    DOI: 10.11925/infotech.1003-3513.2008.09.06
Current Issue | Archive | Adv Search |
Ontoloy Relationship Extraction Research Based on HowNet and Term Relevancy Degree
Fu JibinLiu JieJia KeliangMao Jintao1
1(School of Computer Science and Technology, Beijing Institute of Technology, Beijing 100081, China)
2 (School of Information Engineering, Capital Normal University, Beijing 100037, China)
3 (School of Information Management, Shandong Economic University, Jinan 250014, China)
Export: BibTeX | EndNote (RIS)      

The paper proposes a relationship extraction method based on HowNet and term relevancy degree. Firstly syntax parsing tools are used to extract context feature of terms, and natural language feature and statistical mutual information measure are integrated to compute relevancy degree of terms,then dynamic role and sememe are used as key to seek the relationship in HowNet semantic relationship framework, and explicit semantic lable is designated to the relationship. Experimental results show that the approach is effective.

Key wordsRelationship extraction      Ontology learning      HowNet      NLP     
Received: 19 June 2008      Published: 25 September 2008


Corresponding Authors: Fu Jibin     E-mail:
About author:: Fu Jibin,Liu Jie,Jia Keliang,Mao Jintao

Cite this article:

Fu Jibin,Liu Jie,Jia Keliang,Mao Jintao. Ontoloy Relationship Extraction Research Based on HowNet and Term Relevancy Degree. New Technology of Library and Information Service, 2008, 24(9): 36-40.

URL:     OR

[1] Pantel P, Lin D. A Statistical Corpus-based Term Extractor[C]. In: Proceedings of the 14th Biennial Conference of the Canadian Society on Computational Studies of Intelligence: Advances in Artificial Intelligence, Ottawa,2001:36-46.
[2] Harris Z. Mathematical Structures of Language[M]. Wiley,1968.
[3] Lee L. Measures of Distributional Similarity[C]. In: Proceedings of  the 37th Annual Meeting of the Association for Computational Linguistics(ACL),Maryland USA, 1999:25-32.
[4] 董振东,董强. KDML — 知网知识系统描述语言[EB/OL].[2006-06-25].
[5] Hearst M A. Automatic Acquisition of Hyponyms from Large Text Corpora[C]. In: Proceedings of the 14th International Conference on Computational Linguistics(COLING), Nantes France,1992:539-545.
[6] Cimiano P, Hotho A, Staab S. Learning Concept Hierarchies from Text Corpora Using Formal Concept Analysis[J]. Journal of Artificial Intelligence Research(JAIR), 2005(24):305-339.
[7] Yamaguchi T. Acquiring Conceptual Relationships from Domain-specific Texts[C]. In: Proceedings of the IJCAI Workshop on Ontology Learning, Seatle USA. 2001.
[8] Heyer G, Lauter M, Quasthoff U,et al. Learning Relations using Collocations[C]. In: Proceeding of the IJCAI Workshop on Ontology Learning, Seatle USA. 2001:19-24.
[9] Ciaramita M, Gangemi A, Ratsch E, et al. Unsupervised Learning of Semantic Relationships between Concepts of A Molecular Biology Ontology[C]. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence(IJCAI), Edinburgh, Scotland UK, 2005: 659-664.
[10] Schutz A, Buitelaar P. RelExt: A Tool for Relation Extraction from Text in Ontology Extension[C]. In: Proceedings of the International Semantic Web Conference, Galway Ireland 2005:593-606.

[1] Dai Zhihong, Hao Xiaoling. Extracting Hypernym-Hyponym Relationship for Financial Market Applications[J]. 数据分析与知识发现, 2021, 5(10): 60-70.
[2] Yuemin Wu,Ganggui Ding,Bin Hu. Extracting Relationship of Agricultural Financial Texts with Attention Mechanism[J]. 数据分析与知识发现, 2019, 3(5): 86-92.
[3] Tang Huihui,Wang Hao,Zhang Zixuan,Wang Xueying. Extracting Names of Historical Events Based on Chinese Character Tags[J]. 数据分析与知识发现, 2018, 2(7): 89-100.
[4] Zhai Dongsheng,Cai Wenhao,Zhang Jie,Li Zhenfei. An Improved Method of Semantic Similarity Calculation of Chinese Trademarks[J]. 数据分析与知识发现, 2017, 1(11): 19-28.
[5] Li Xiangdong,Liu Kang,Ding Cong,Gao Fan. A New Automatic Categorization Method with Documents Based on HowNet[J]. 现代图书情报技术, 2016, 32(2): 59-66.
[6] Hui Zhu,Jianlin Yang,Hao Wang. Study on Construction of Domain Terminology Taxonomic Relation[J]. 现代图书情报技术, 2016, 32(1): 73-80.
[7] Gao Feng, Xiong Jing, Liu Yongge. Research on the Extenics of Oracle Bone Inscriptions Interpretation Based on HowNet[J]. 现代图书情报技术, 2015, 31(7-8): 58-64.
[8] Li Xiangdong, Cao Huan, Ding Cong, Huang Li. Short-text Classification Based on HowNet and Domain Keyword Set Extension[J]. 现代图书情报技术, 2015, 31(2): 31-38.
[9] Liu Huailiang, Du Kun, Qin Chunxiu. Research on Chinese Text Categorization Based on Semantic Similarity of HowNet[J]. 现代图书情报技术, 2015, 31(2): 39-45.
[10] Yang Chunlei, Dan Flickinger. ManGO:Grammar Engineering for Deep Linguistic Processing[J]. 现代图书情报技术, 2014, 30(3): 57-64.
[11] Fan Zijin, Wang Huilin, Zhang Junsheng. Review of Head-driven Phrase Structure Grammar[J]. 现代图书情报技术, 2013, (4): 40-47.
[12] Gu Jun, Xu Xin. Study on Ontology Relation Extraction in Chinese Patent Documents[J]. 现代图书情报技术, 2013, 29(10): 73-78.
[13] Zeng Shaoqin, Wang Huilin, Zhang Yinsheng. Mandarin Text Representation Based on Minimal Recursion Semantics——Illustrate by Quantitative Noun Phrases[J]. 现代图书情报技术, 2012, (10): 35-41.
[14] Liu Ping, Hu Yuehong. Review on Ontology Learning Methods and Techniques[J]. 现代图书情报技术, 2012, 28(1): 19-26.
[15] Bai Rujiang, Yu Xiaofan, Wang Xiaoyue. The Comparative Analysis of Major Domestic and Foreign Ontology Library[J]. 现代图书情报技术, 2011, 27(1): 3-13.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938