Please wait a minute...
New Technology of Library and Information Service  2009, Vol. 3 Issue (2): 71-77    DOI: 10.11925/infotech.1003-3513.2009.02.12
Current Issue | Archive | Adv Search |
An Investigation on Factors Affecting the User's Acceptance Behavior of Enterprise Information System——An Example of ERP System
Gan Liren   Xu Yingnan
(Department of Information Management, School of Economics and Management, Nanjing University of Science and Technology, Nanjing 210094,China)
Export: BibTeX | EndNote (RIS)      

This paper proposes a concept model of user's acceptance behavior, taking ERP system as an empirical study. Structural equation analysis methods are used to validate the hypothetic relationship among the structural variables in the concept model. The results show that a majority of the variables proposed in the model have direct or indirect impact on user's intention of continuing the use. This model will be helpful for the enterprises to understand the user's behavior in the Enterprise Information System.

Key wordsInformation system      Technology acceptance behavior      Influence factor analysis      Structural equation model      ERP     
Received: 18 November 2008      Published: 25 February 2009


Corresponding Authors: Xu Yingnan     E-mail:
About author:: Gan Liren,Xu Yingnan

Cite this article:

Gan Liren,Xu Yingnan. An Investigation on Factors Affecting the User's Acceptance Behavior of Enterprise Information System——An Example of ERP System. New Technology of Library and Information Service, 2009, 3(2): 71-77.

URL:     OR

[1] Davis. Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology [J]. MIS Quarterly, 1989, 13(3):319-339.
[2] Mathieson K. Predicting User Intention: Comparing the Technology Acceptance Model with the Theory of Planned Behavior [J]. Information Systems Research, 1991, 2(3): 173-191.
[3] Ajzen I, Fishbein M. Understanding Attitudes and Premiering Social Behavior [M]. Englewood Cliffs: Prentice-Hall, 1980.
[4] Gilbert A C, JR., Surpreanant C.An Investigation Into the Determinants of Customer Satisfaction [J].Journal of Marketing Research, 1982, 19(4): 491-504.
[5] Bandura A. Self-Efficacy Mechanism in Human Agency American[J]. Psychologist, 1982, 37(2): 122-147.
[6] Rogers E M. Shoemaker F F. Communication of Innovations: A Cross-Cultural Approach[M]. New York: Free Press, 1971.
[7] 赵昆.信息技术用户接受模型研究现状分析及展望[J].云南财经大学学报,2007,23(2):104-108.
[8] 张晶.企业信息系统用户接受行为影响因素研究—以ERP系统为例的实证研究[D].南京:南京理工大学,2007.
[9] 侯杰泰,温忠麟,成子娟. 结构方程模型及其应用[M].北京:教育科学出版社, 2004.
[10] Hasan B. Delineating the Effects of General and System-specific Computer Self-efficacy Beliefs on IS Acceptance [J]. Information & Management, 2006(43):565-571.
[11] Mun Y Y,Jackson J D, Park J S,Probst J C. Understanding Information Technology Acceptance by Individual Professionals: Toward an integrative view[J]. Information & Management, 2006(43):350-363.
[12] Sang M L,Kim I, Rhee S, Trimi S,et al. The role of Exogenous Factors in Technology Acceptance: The Case of Bbject-oriented Technology [J]. Information & Management, 2006(43):469-480.
[13] Dishaw M T,Strong D M. Extending the Technology Acceptance Model With Task-technology Fit Constructs [J]. Information & Management, 1999(36):9-21.
[14] 鲁耀斌, 徐红梅. 技术接受模型的实证研究综述[J].研究与发展管理, 2006(6):93-99.
[15] 窦军生. 计划行为理论及其在家族企业传承研究中的应用[J].技术经济, 2007(2):39-42.
[16] Hong S J,Thong J Y L,TamK Y. Understanding Continued Information Technology Usage Behavior: A Comparison of Three Models in the Context of Mobile Internet [J].Decision Support Systems, 2006(42):1819-1834.
[17] Avlonitis G J,Panagopoulos N G. Antecedents and Consequences of CRM Technology Acceptance in the Sales Force[J]. Industrial Marketing Management, 2005(34):355-368.
[18] Gyampah K A,Salam A F. An Extension of the Technology Acceptance Model in an ERP Implementation Environment [J]. Information & Management, 2004(41):731-745.
[19] Kim B G, Park S C, Lee K J. A Structural Equation Modeling of the Internet Acceptance in Korea [J]. Electronic Commerce Research and Applications, 2007.
[20] Lee H Y, Lee Y K, Kwon D. The Intention to Use Computerized Reservation Systems: the Moderating Effects of Organizational Support and Supplier Incentive [J]. Journal of Business Research, 2005(58):1552-1561.
[21] Kim T G, Lee J H, Law R. An Empirical Examination of the Acceptance Behaviour of Hotel Front office Systems: An Extended Technology Acceptance Model [J]. Tourism Management, 2007.
[22] Ngai E W T, Poon J K L, Chan Y H C. Empirical Examination of the Adoption of WebCT Using TAM[J]. Computers & Education, 2007(48):250-267.
[23] Yang H D,Yoo Y J. It’s all About Attitude: Revisiting the Technology Acceptance Model[J]. Decision Support Systems, 2004(38):19-31.
[24] 周晓宏,郭文静.探索性因子分析与验证性因子分析异同比较[J]. 科技和产业,2008,8(9): 69-71.
[25] Hair J F, Tatham R L,Anderson R E,et al. Multivariate Data Analysis[M]. London, Prentice Hall. 1998.
[26] 王松涛.探索性因子分析与验证性因子分析比较研究[J].兰州学刊,2006(5): 155-156.

[1] Xu Liangchen, Guo Chonghui. Predicting Survival Rates for Gastric Cancer Based on Ensemble Learning[J]. 数据分析与知识发现, 2021, 5(8): 86-99.
[2] Ruan Xiaoyun,Liao Jianbin,Li Xiang,Yang Yang,Li Daifeng. Interpretable Recommendation of Reinforcement Learning Based on Talent Knowledge Graph Reasoning[J]. 数据分析与知识发现, 2021, 5(6): 36-50.
[3] Lu Linong,Zhu Zhongming,Zhang Wangqiang,Wang Xiaochun. Cross-database Knowledge Integration and Fingerprint of Institutional Repositories with Lingo3G Clustering Algorithm[J]. 数据分析与知识发现, 2021, 5(5): 127-132.
[4] Hua Bin, Wu Nuo, He Xin. Integrating Expert Reviews for Government Information Projects with Knowledge Fusion[J]. 数据分析与知识发现, 2021, 5(10): 124-136.
[5] Xi Yunjiang, Du Diedie, Liao Xiao, Zhang Xuehong. Analyzing & Clustering Enterprise Microblog Users with Supernetwork[J]. 数据分析与知识发现, 2020, 4(8): 107-118.
[6] Yuxin Peng,Zhaohua Deng,Jiang Wu. Analysis of Knowledge Sharing Behavior of Medical Professional Users in Online Health Communities Based on Social Capital and Motivation Theory[J]. 数据分析与知识发现, 2019, 3(4): 63-70.
[7] Dongmei Mu,Hui Fa,Ping Wang,Jing Sun. Research on Disease Risk Factors on Structural Equation Model[J]. 数据分析与知识发现, 2019, 3(4): 80-89.
[8] Wang Tingting,Wang Kaiping,Qi Guijie. Analyzing Implemented Ideas from Open Innovation Platform with Sentiment Analysis: Case Study of Salesforce[J]. 数据分析与知识发现, 2018, 2(4): 38-47.
[9] Wang Tingting,Han Man,Wang Yu. Optimizing LDA Model with Various Topic Numbers: Case Study of Scientific Literature[J]. 数据分析与知识发现, 2018, 2(1): 29-40.
[10] Guan Peng,Wang Yuefen. Identifying Optimal Topic Numbers from Sci-Tech Information with LDA Model[J]. 现代图书情报技术, 2016, 32(9): 42-50.
[11] Luo Zheng,Li Yu’na. Influencing Factors of Collaborative Knowledge Creation in Enterprise Value Chain[J]. 现代图书情报技术, 2016, 32(5): 80-90.
[12] Chen Longlong,Zhang Wende,An Jie. An Enterprise Patent Value Analysis System Based on ACO[J]. 现代图书情报技术, 2016, 32(4): 97-103.
[13] Zhao Yuxiang,Peng Xixian. Media as a Community? Literature Based Topic Evaluation in Information Systems Discipline[J]. 现代图书情报技术, 2014, 30(1): 56-65.
[14] Li Gang, Mao Jin, Chen Jinghao. Fast Duplicate Detection for Chinese Texts Based on Semantic Fingerprint[J]. 现代图书情报技术, 2013, 29(9): 41-47.
[15] Zhang Yufeng, He Chao, Wang Zhifang, Zhou Lei. Research on Enterprise Competitiveness Factor Analysis Combining Semantic Clustering[J]. 现代图书情报技术, 2012, (9): 49-55.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938