Please wait a minute...
New Technology of Library and Information Service  2009, Vol. 3 Issue (3): 74-79    DOI: 10.11925/infotech.1003-3513.2009.03.13
Current Issue | Archive | Adv Search |
Online Public Opinion Hotspot Detection and Analysis Based on Document Clustering
Wang Wei  Xu Xin
(Department of InformaticsEast China Normal University,Shanghai 200241,China)
Export: BibTeX | EndNote (RIS)      

According to the requirement of online public opinion analysis, this paper builds an online public opinion hotspot detection and analysis system based on document clustering. It builds vector space model by abstracting document features from sample Web pages, and get the hot-spot cluster by OPTICS algorithm. According the vector of hot-spot cluster, the Web pages are clustered for the second time. At last, it gets the time evolution mode about the public opinion to afford decision support for specific field,and improves the quality of page correlation and analyze the public opinion more accurately.

Key wordsOnline public opinion      Hotspot Detection      Public opinion analysis      Document clustering     
Received: 12 January 2009      Published: 25 March 2009


Corresponding Authors: Wang Wei     E-mail:
About author:: Wang Wei,Xu Xin

Cite this article:

Wang Wei,Xu Xin. Online Public Opinion Hotspot Detection and Analysis Based on Document Clustering. New Technology of Library and Information Service, 2009, 3(3): 74-79.

URL:     OR

[1] 中国互联网络信息中心.第22次中国互联网络发展状况统计报告[EB/OL].[2008-07-23].
[2] 李晓黎. WEB信息检索与分类中的数据采掘研究[D].北京:中国科学院计算技术研究所,2001:61-90.
[3] ICTCLAS简介[EB/OL]. [2008-12-01].
[4] 姚清耘.基于向量空间模型的中文文本聚类方法的研究[D].上海:上海交通大学,2008.
[5] 孙学刚,陈群秀,马亮.基于主题的Web文档聚类研究[J].中文信息学报,2003(3):12-16.
[6] 郭建永,蔡永,甑艳霞.基于文本聚类技术的主题发现[J].计算机工程与设计,2008(6):1426-1428.
[7] 徐文海,温有奎.一种基于TFIDF方法的中文关键词抽取算法[J].信息系统,2008(2):298-301.
[8] 刘群,李素建.基于《知网》的词汇语义相似度计算[A].第三届汉语词汇语义学研讨会,2002.

[1] Fan Tao,Wang Hao,Wu Peng. Sentiment Analysis of Online Users' Negative Emotions Based on Graph Convolutional Network and Dependency Parsing[J]. 数据分析与知识发现, 2021, 5(9): 97-106.
[2] Wang Nan,Li Hairong,Tan Shuru. Predicting of Public Opinion Reversal with Improved SMOTE Algorithm and Ensemble Learning[J]. 数据分析与知识发现, 2021, 5(4): 37-48.
[3] Cheng Tiejun, Wang Man, Huang Baofeng, Feng Lanping. Predicting Online Public Opinion in Emergencies Based on CEEMDAN-BP[J]. 数据分析与知识发现, 2021, 5(11): 59-67.
[4] Liang Ye,Li Xiaoyuan,Xu Hang,Hu Yiran. CLOpin: A Cross-Lingual Knowledge Graph Framework for Public Opinion Analysis and Early Warning[J]. 数据分析与知识发现, 2020, 4(6): 1-14.
[5] Deng Jiangao,Zhang Xuan,Fu Zhu,Wei Qingming. Tracking Online Public Opinion Based on System Dynamics: Case Study of “Xiangshui Explosion Accident”[J]. 数据分析与知识发现, 2020, 4(2/3): 110-121.
[6] Liang Yanping,An Lu,Liu Jing. Topic Resonance of Micro-blogs on Similar Public Health Emergencies[J]. 数据分析与知识发现, 2020, 4(2/3): 122-133.
[7] Wang Xiufang,Sheng Shu,Lu Yan. Analyzing Public Opinion from Microblog with Topic Clustering and Sentiment Intensity[J]. 数据分析与知识发现, 2018, 2(6): 37-47.
[8] Cen Yonghua,Wang Yuefen. Social Public Opinion Analysis and Decision Making Support with Big Data[J]. 现代图书情报技术, 2016, 32(7-8): 3-11.
[9] Wu Ni, Zhao Pengwei, Qin Chunxiu. Microblog Hotspot Detection Based on Semantic Analysis and Similarity Strength[J]. 现代图书情报技术, 2015, 31(5): 57-64.
[10] Duan Jianyong, Cheng Liwei, Zhang Mei, Gao Zhen'an. The Common Knowledge Mining for the Internet Public Opinion Analysis[J]. 现代图书情报技术, 2013, 29(10): 59-65.
[11] Lu Bei, Cheng Xiao, Chen Zhi-Qun. Research on the Hot Topics Discovery Algorithm Based on Improved Ant Colony Clustering[J]. 现代图书情报技术, 2010, 26(4): 66-71.
[12] Zhang Chengzhi. Survey on Document Clustering Description[J]. 现代图书情报技术, 2009, 3(2): 1-8.
[13] Qian Aibing. A Model for Analyzing Public Opinion Under the Web and Its Implementation[J]. 现代图书情报技术, 2008, 24(4): 49-55.
[14] Cen Yonghua,Wang Xiaorong,Ji Yonghui. Algorithm and Experiment Research of Textual Document Clustering Based on Improved K-means[J]. 现代图书情报技术, 2008, 24(12): 73-79.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938