Please wait a minute...
New Technology of Library and Information Service  2009, Vol. Issue (9): 28-33    DOI: 10.11925/infotech.1003-3513.2009.09.05
Current Issue | Archive | Adv Search |
Survey of Approaches to Research Front Detection
Chen Shiji
(Library of China Agricultural University, Beijing 100193, China)
(National Science Library, Chinese Academy of Sciences, Beijing 100190, China)
(Graduate University of Chinese Academy of Science, Beijing 100049, China)
Export: BibTeX | EndNote (RIS)      

 This paper analyzes the meaning and feature of research front, then it introduces some approaches based on citation analysis and theme words irrespectively. In the end, it concludes the advantages, disadvantages and application environment of  these approaches.

Key words Research front      Citation analysis      Community structure detection      Co-word analysis     
Received: 07 August 2009      Published: 25 September 2009


Corresponding Authors: Chen Shiji     E-mail:
About author:: Chen Shiji

Cite this article:

Chen Shiji. Survey of Approaches to Research Front Detection. New Technology of Library and Information Service, 2009, (9): 28-33.

URL:     OR

[1] Price D D. Networks of Science Papers[J]. Science, 1965, 149(3683): 510-515.
 [2] Small H, Griffith B C. The Structure of Scientific Literatures I: Identifying and Graphing Specialties[J]. Science Studies, 1974, 4(1): 17-40.
 [3] Garfield E. Research Fronts[J]. Current Contents, 1994(41):3-7.
 [4] Persson O. The Intellectual Base and Research Fronts of JASIS 1986–1990[J]. Journal of the American Society for Information Science, 1994, 45(1): 31-38.
 [5] Research Front Methodology[EB/OL]. [2009-06-02].
 [6] Small H. Tracking and Predicting Growth Areas in Science[J]. Scientometrics, 2006, 68(3): 595-610.
 [7] Small H, Upham P. Citation Structure of an Emerging Research Area on the Verge of Application[J]. Scientometrics, 2009, 79(2): 365-375.
 [8] 侯海燕. 科学计量学知识图谱[M]. 大连: 大连理工大学出版社, 2008.
 [9] Chen C. CiteSpace II: Detecting and Visualizing Emerging Trends and Transient Patterns in Scientific Literature[J]. Journal of the American Society for Information Science and Technology, 2006, 57(3): 359-377.
[10] 韩涛. 知识结构演化深度分析的方法及其实现[D]. 北京: 中国科学院研究生院, 2008.
[11] Van Den Besselaar P, Heimeriks G. Mapping Research Topics Using Word-reference Co-occurrences: A  Method and an Exploratory Case Study[J]. Scientometrics, 2006, 68(3): 377-393.
[12] Morris S A, Yen G, Wu Z, et al. Time Line Visualization of Research Fronts[J]. Journal of the American Society for Information Science and Technology, 2003, 54(5): 413-422.
[13] Girvan M, Newman M E J. Community Structure in Social and Biological Networks[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(12): 7821-7826.
[14] 李晓佳,张鹏,狄增如,等. 复杂网络中的社团结构[J]. 复杂系统与复杂性科学,2008, 5(3): 19-42.
[15] Klavans R, Boyack K W. Identifying a Better Measure of Relatedness for Mapping Science[J]. Journal of the American Society for Information Science and Technology, 2006, 57(2): 251-263.
[16] Shibata N, Kajikawa Y, Takeda Y, et al. Detecting Emerging Research Fronts Based on Topological Measures in Citation Networks of Scientific Publications[J]. Technovation, 2008, 28(11): 758-775.
[17] Takeda Y, Kajikawa Y. Optics: A Bibliometric Approach to Detect Emerging Research Domains and Intellectual Bases[J]. Scientometrics, 2009, 78(3): 543-558.
[18] Fan Y, Li M, Zhang P, et al. The Effect of Weight on Community Structure of Networks[J]. Physica A, 2007, 378(2): 583-590.
[19] Newman M E J. Analysis of Weighted Networks[J]. Physical Review E, 2004, 70(5): 1-9.
[20] Blondel V D, Guillaume J, Lambiotte R, et al. Fast Unfolding of Communities in Large Networks[J/OL].
[21] Wallace M L, Gingras Y, Duhon R. A New Approach for Detecting Scientific Specialties[J]. Journal of the American Society for Information Science and Technology, 2009, 60(2): 241-246.
[22] Shibata N, Kajikawa Y, Takeda Y, et al. Comparative Study on Methods of Detecting Research Fronts Using Different Types of Citation[J]. Journal of the American Society for Information Science and Technology, 2009, 60(3): 571-580.
[23] Kleinberg J. Bursty and Hierarchical Structure in Streams[J]. Data Mining and Knowledge Discovery, 2003, 7(4): 373-397.
[24] Mane K K, Borner K. Mapping Topics and Topic Bursts in PNAS[J].Proceedings of the National Academy of Sciences of the United States of America, 2004,101(Suppl 1):5287-5290.
[25] Havre S,Hetzler E, Whitney P,et al. ThemeRiver: Visualizing Thematic Changes in Large Document Collections[J]. IEEE Transactions on Visualization and Computer Graphics, 2002, 8(1): 9-20.
[26] Swan R, Jensen D. TimeMines:Constructing Timelines with Statistical Models of Word Usage[C]. In: Proceedings of the 6th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York,USA: ACM Press, 2000: 73-80.
[27] 冯璐,冷伏海. 共词分析方法理论进展[J]. 中国图书馆学报, 2006, 32(2): 88-92.
[28] 张晗,崔雷. 生物信息学的共词分析研究[J]. 情报学报, 2003, 22(5): 613-617.
[29] 蒋颖. 1995-2004年文献计量学研究的共词分析[J]. 情报学报, 2006, 25(4): 503-512.
[30] Pottenger W M, Yang T. Detecting Emerging Concepts in Text Data Mining[A].// Berry M. Computational Information Retrieval[M].Philadelphia,  USA :Society for Industrial and Applied Mathematics, 2001: 89-105.
[31] Kontostathis A, Holzman L E, Pottenger W M. Use of Term Clusters for Emerging Trend Detection[EB/OL]. [2009-08-07].
[32] 吴清强. 主题结构构建优化技术研究[D]. 北京: 中国科学院研究生院, 2008.
[33] Kontostathis A, Galitsky L M, Pottenger W M, et al. A Survey of Emerging Trend Detection in Textual Data Mining[A].// Berry M W. Survey of Text Mining: Clustering, Classification, and Retrieval[M]. New York:Springer-Verlag, 2004: 185-224.
[34] Hoang L M. Emerging Trends Detection from Scientific Online Documents[D]. Japan Advanced Institute of Science and Technology, 2006.

[1] Wu Jinming,Hou Yuefang,Cui Lei. Automatic Expression of Co-occurrence Clustering Based on Indexing Rules of Medical Subject Headings[J]. 数据分析与知识发现, 2020, 4(9): 133-144.
[2] Qikai Cheng,Jiamin Wang,Wei Lu. Discovering Domain Vocabularies Based on Citation Co-word Network[J]. 数据分析与知识发现, 2019, 3(6): 57-65.
[3] Hong Ma, Yongming Cai. A CA-LDA Model for Chinese Topic Analysis: Case Study of Transportation Law Literature[J]. 数据分析与知识发现, 2016, 32(12): 17-26.
[4] Lu Chao, Zhang Chengzhi. Study on the Reference Network of Single Academic Article Based on Citation Content[J]. 现代图书情报技术, 2014, 30(10): 33-41.
[5] Zhao Yuxiang,Peng Xixian. Media as a Community? Literature Based Topic Evaluation in Information Systems Discipline[J]. 现代图书情报技术, 2014, 30(1): 56-65.
[6] Zhang Sufang,Song Hu. The Construction of a Citation Retrieval and Analysis Automation System[J]. 现代图书情报技术, 2014, 30(1): 92-96.
[7] Hu Changping, Chen Guo. A New Feature Selection Method Based on Term Contribution in Co-word Analysis[J]. 现代图书情报技术, 2013, 29(7/8): 89-93.
[8] Tang Xiaobo, Xiao Lu. Research of Co-word Analysis Method of Combining Keywords Extension and Domain Ontology[J]. 现代图书情报技术, 2013, 29(11): 60-67.
[9] Chen Shiji, Shi Liwen, Li Dongmei, Zuo Wenge. Review on Normalization Methods of Citation Counts[J]. 现代图书情报技术, 2012, 28(4): 54-60.
[10] Fan Yunman, Ma Jianxia. Review on the LDA-based Techniques Detection for the Field Emerging Topic[J]. 现代图书情报技术, 2012, (12): 58-65.
[11] Hu Zhigang, Chen Chaomei, Liu Zeyuan, Hou Haiyan. Design and Implementation of the Citation Analysis System Based on XML Full-text Articles[J]. 现代图书情报技术, 2012, (11): 72-77.
[12] Ye Chunlei, Leng Fuhai. Theme Identification Empirical Study on Technical Documentation in Full-text[J]. 现代图书情报技术, 2012, 28(1): 53-57.
[13] Lu Wei, Peng Yu, Chen Wu. Hot Research Topics Detection Based on SOM[J]. 现代图书情报技术, 2011, 27(1): 63-68.
[14] Yang Ying, Cui Lei. Evolution of Topics About Medical Informatics by Improved Co-word Cluster Analysis[J]. 现代图书情报技术, 2011, 27(1): 83-87.
[15] Wang Lixue,Leng Fuhai,Wang Haixia. Research on Technology Readiness Level and Identified Methods[J]. 现代图书情报技术, 2010, 26(3): 58-63.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938