Please wait a minute...
New Technology of Library and Information Service  2009, Vol. Issue (9): 51-56    DOI: 10.11925/infotech.1003-3513.2009.09.09
Current Issue | Archive | Adv Search |
P2P Search Approach Based on Query Expansion and Node Aggregation
Yang Jing   Wang Yamin
(School of Economics and Management, Xidian University, Xi’an 710071, China)
Export: BibTeX | EndNote (RIS)      

This paper proposes an approach based on query expansion and node aggregation under the unstructured peer-to-peer network. This approach can find the relationships of keywords and nodes automatically, then it records the information on each local node and updates its knowledge base  continuously. In the future retrieval, the purpose of keywords relationship is to increase hit goals,and the purpose of similar nodes aggregation is to decrease the search scope. Simulation experiment results prove that this approach has high search hit rate and accuracy.

Key wordsP2P      Unstructured      Relationship      Query expansion      Node aggregation     
Received: 11 August 2009      Published: 25 September 2009


Corresponding Authors: Yang Jing     E-mail:
About author:: Yang Jing,Wang Yamin

Cite this article:

Yang Jing,Wang Yamin. P2P Search Approach Based on Query Expansion and Node Aggregation. New Technology of Library and Information Service, 2009, (9): 51-56.

URL:     OR

〖FK)〗〖HT6SS〗[〖CM1-1〗1] 〖ZK(#〗李振武,杨舰,白英彩.对等网络研究及其挑战[J].〖QX(Y8〗计算机应用与软件〖QX)〗,2004,21(2):54-56.[〖CM1-1〗2] Gnutella[EB/OL].[2009-05-10].[〖CM1-1〗3] 邱志欢,肖明忠,代亚非.一种P2P环境下基于用户行为的语义检索方案[J]. 〖QX(Y8〗软件学报〖QX)〗, 2007, 18(9):2216-2225.[〖CM1-1〗4] 宫月.基于节点兴趣的P2P信息搜索机制研究与实现[D].大连:大连理工大学,2007.[〖CM1-1〗5] Meng X, Gong Y. Research on Information Retrieval Based on Keywords Relationship and Past Retrieval Records in P2P Networks[C]. In:Proceedings of the 2007 IFIP International Conference on Network and Parallel Computing Workshops.2007:495-501. [〖CM1-1〗6] Nakauchi K, Ishikawa Y, Morikawa H,et al. Peer-to-Peer Keyword Search Using Keyword Relationship[C].In:Proceedings of the 3rd International Symposium on Cluster Computing and the Grid.2003:359-366.[〖CM1-1〗7] 徐光明,沈云付.基于语义网的节点关联的P2P搜索[J]. 〖QX(Y8〗计算机工程与设计〖QX)〗,2006,27(6):979-981.[〖CM1-1〗8] 〖JP3〗Zhang L, Zou F T, Ma F Y. KRBKSS: A Keyword Relationship Based Keyword-set Search System for Peer-to-Peer Networks[J]. Journal of Zhejiang University Science A, 2005,6(6):577-582.〖JP〗[〖CM1-1〗9] Sripanidkulchai K, Maggs B, Zhang H. Efficient Content Location Using Interest-based Locality in Peer-to-Peer Systems[C]. In:Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications. 2003:2166- 2176.[10] PeerSim[EB/OL].[2009-05-10].[11] Ranaivo Gal,Sabourin Aurélien. P2P Simulation with PeerSim[EB/OL]. [2009-05-10]. [12] Jia Z. Random Walk Search in Unstructured P2P[J]. Journal of Systems Engineering and Electronics, 2006,17(3):648-653.[13] Eclipse[EB/OL].[2009-05-10].[14] 初晓峰.基于兴趣驱动的P2P搜索方法研究[D].哈尔滨:哈尔滨工程大学,2009.〖ZK)〗〖JY,2〗

[1] Huang Mingxuan,Jiang Caoqing,Lu Shoudong. Expanding Queries Based on Word Embedding and Expansion Terms[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[2] Dai Zhihong, Hao Xiaoling. Extracting Hypernym-Hyponym Relationship for Financial Market Applications[J]. 数据分析与知识发现, 2021, 5(10): 60-70.
[3] Jiao Qihang,Le Xiaoqiu. Generating Sentences of Contrast Relationship[J]. 数据分析与知识发现, 2020, 4(6): 43-50.
[4] Li Chengliang,Zhao Zhongying,Li Chao,Qi Liang,Wen Yan. Extracting Product Properties with Dependency Relationship Embedding and Conditional Random Field[J]. 数据分析与知识发现, 2020, 4(5): 54-65.
[5] Jingjing Pei,Xiaoqiu Le. Identifying Coordinate Text Blocks in Discourses[J]. 数据分析与知识发现, 2019, 3(5): 51-56.
[6] Yuemin Wu,Ganggui Ding,Bin Hu. Extracting Relationship of Agricultural Financial Texts with Attention Mechanism[J]. 数据分析与知识发现, 2019, 3(5): 86-92.
[7] Yong Ding,Lu Cheng,Cuiqing Jiang. Choosing Portfolios Based on Bipartite Graph of P2P Lending Networks[J]. 数据分析与知识发现, 2019, 3(12): 76-83.
[8] Huiying Gao,Tian Wei,Jiawei Liu. Friend Recommendation Based on User Clustering and Dynamic Interaction Trust Relationship[J]. 数据分析与知识发现, 2019, 3(10): 66-77.
[9] Mu Dongmei,Jin Shan,Ju Yuanhong. Finding Association Between Diseases and Genes from Literature Abstracts[J]. 数据分析与知识发现, 2018, 2(8): 98-106.
[10] Sun Lin,Wang Yanzhang. Identifying Competitive Intelligence Based on Knowledge Element[J]. 数据分析与知识发现, 2018, 2(6): 25-36.
[11] Cao Wei,Li Can,He Tingting,Zhu Weidong. Predicting Credit Risks of P2P Loans in China Based on Ensemble Learning Methods[J]. 数据分析与知识发现, 2018, 2(10): 65-76.
[12] Ye Guanghui,Xia Lixin. Review of Expert Retrieval and Expert Ranking Studies[J]. 数据分析与知识发现, 2017, 1(2): 1-10.
[13] He Jianmin,Yin Shu. Identifying Influential Users in Social Networks[J]. 现代图书情报技术, 2016, 32(4): 20-30.
[14] Wu Yingliang, Yao Huaidong, Li Cheng'an. An Improved Collaborative Filtering Recommendation Algorithm with Indirect Trust Relationship[J]. 现代图书情报技术, 2015, 31(9): 38-45.
[15] Tan Min, Xu Xin. The Empirical Study of h-Degree in Recommendation Network of Academic Blogs——Taking Blogs as an Example[J]. 现代图书情报技术, 2015, 31(7-8): 31-36.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938