Please wait a minute...
New Technology of Library and Information Service  2009, Vol. Issue (10): 40-44    DOI: 10.11925/infotech.1003-3513.2009.10.07
Current Issue | Archive | Adv Search |
Mobile Query Expansion Based on Related Word Co-occurrence of Abstract and Log
Zhang Yulian1  Liu Juan1  Qi FengZhou Xinglin 2
1(College of Information Science and Engineering, Yanshan University, Qinhuangdao 066004, China)
2(Department of Computer Science, Shanghai Technical Institute of  Electronics & Information,Shanghai 201411,China)
Export: BibTeX | EndNote (RIS)      

 Due to the hardware limitations of mobile terminal equipment and keywords submited by users,there are problems of word mismatch between short queries and query results. A mobile query expansion method based on related words co-occurrence strategy is proposed, which is called ALRCO.It utilizes the related words co-occurrence information in the abstract of documents and keywords in the query logs to evaluate quality of the expansion words, and selects the most appropriate expansion terms. The expansion words with the initial query have the better relevance to the characterization of the theme.Finally,experimental results show that ALRCO offers more accuracy compared with traditional query.

Key wordsInformation retrieval      Words co-occurrence      Query expansion      ALRCO     
Received: 31 July 2009      Published: 25 October 2009


Corresponding Authors: Liu Juan     E-mail:
About author:: Zhang Yulian ,Liu Juan,Qi Feng ,Zhou Xinglin

Cite this article:

Zhang Yulian ,Liu Juan,Qi Feng ,Zhou Xinglin. Mobile Query Expansion Based on Related Word Co-occurrence of Abstract and Log. New Technology of Library and Information Service, 2009, (10): 40-44.

URL:     OR

[1] Masaya Murata, Hiroyuki Toda, Yumiko Matsuura,et al. Access Concentration Detection in Click Logs to Improve Mobile Web-IR[J]. Information Sciences: An International Journal,2009,179 (12): 1859-1869.
[2] Voorhees E M. The Effectiveness and Efficiency of Agglomerative Hierarchic Clustering in Document Retrieval [D]. Ithaca, NY, USA: Cornell University, 1986.
[3] Attar R, Fraenkel A S. Local Feedback in Full-text Retrieval Systems[J]. Journal of the ACM, 1977,24(3):397-417.
[4] Xu J,Croft W B. Query Expansion Using Local and Global Document Analysis[C]. In: Proceedings of the 19th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval.1996:4-11.
[5] Mitra M, Singhal A, Buckley C. Improving Automatic Query Expansion[C]. In: Proceedings of the 21st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. Melbourne: ACM Press, 1998.
[6] 田萱,杜小勇,李海华.语义查询扩展中词语-概念相关度的计算[J].软件学报,2008,19(8):2043-2053.
[7] 崔航,文继荣,李敏强.基于用户日志的查询扩展统计模型[J].软件学报, 2003,14(9):1593-1599.
[8] Rocchio J. Relevance Feedback in Information Retrieval [A].// Salton G. The Smart Retrieval System—Experiments in Automatic Document Processing [M]. Upper Saddle River, NJ, USA: Prentice-Hall, 1971:313-323.
[9] 丁国栋,白硕,王斌.一种基于局部共现的查询扩展方法[J].中文信息学报,2006,20(3):118-127.
[10]  Vinay V, Cox I J, Milic-Frayling N, et al.Can Constrained Relevance Feedback and Display Strategies Help Users Retrieve Items on Mobile Devices?[J] Information Retrieval, 2006,9(4):435-453.

[1] Huang Mingxuan,Jiang Caoqing,Lu Shoudong. Expanding Queries Based on Word Embedding and Expansion Terms[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[2] Meng Zhen,Wang Hao,Yu Wei,Deng Sanhong,Zhang Baolong. Vocal Music Classification Based on Multi-category Feature Fusion[J]. 数据分析与知识发现, 2021, 5(5): 59-70.
[3] Li Yueyan,Wang Hao,Deng Sanhong,Wang Wei. Research Trends of Information Retrieval——Case Study of SIGIR Conference Papers[J]. 数据分析与知识发现, 2021, 5(4): 13-24.
[4] Mingxuan Huang,Shoudong Lu,Hui Xu. Cross-Language Information Retrieval Based on Weighted Association Patterns and Rule Consequent Expansion[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[5] Sun Haixia,Wang Lei,Wu Yingjie,Hua Weina,Li Junlian. Matching Strategies for Institution Names in Literature Database[J]. 数据分析与知识发现, 2018, 2(8): 88-97.
[6] Yang Chaofan,Deng Zhonghua,Peng Xin,Liu Bin. Review of Information Retrieval Research: Case Study of Conference Papers[J]. 数据分析与知识发现, 2017, 1(7): 35-43.
[7] Zhang Xiaojuan,Han Yi. Reviews on Temporal Information Retrieval[J]. 数据分析与知识发现, 2017, 1(1): 3-15.
[8] Huang Mingxuan. Cross Language Information Retrieval Model Based on Matrix-weighted Association Patterns Mining[J]. 数据分析与知识发现, 2017, 1(1): 26-36.
[9] Ding Heng,Lu Wei. Building Standard Literature Knowledge Service System[J]. 现代图书情报技术, 2016, 32(7-8): 120-128.
[10] Heng Ding, Wei Lu. A Study on Correlation-based Cross-Modal Information Retrieval[J]. 现代图书情报技术, 2016, 32(1): 17-23.
[11] Liu Feng, Li Yu, Lv Xueqiang, Li Zhuo. Research on Query Topic Classification Method[J]. 现代图书情报技术, 2015, 31(4): 10-17.
[12] Mao Jin, Li Gang, Cao Yujie. Re-rank Retrieval Results Through Subject Indexing[J]. 现代图书情报技术, 2014, 30(7): 48-55.
[13] Qiu Junping, Fang Guoping. The Comparative Analysis of Natural Language Processing Research at Home and Abroad Based on Knowledge Mapping[J]. 现代图书情报技术, 2014, 30(12): 51-61.
[14] Tang Jingxiao,Lv Xueqiang,Liu Chengyang,Li Han. A Hierarchical Framework for User Intention Recognition[J]. 现代图书情报技术, 2014, 30(1): 36-42.
[15] Zhang Mei, Duan Jianyong, Xu Jichao. Person Name Attribute Knowledge Mining and Its Application for Query Classification[J]. 现代图书情报技术, 2013, 29(9): 82-87.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938