Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (1): 41-45    DOI: 10.11925/infotech.1003-3513.2010.01.08
article Current Issue | Archive | Adv Search |
Research on Mashup Tools
Ji Shanshan1,2   Li Yu1   Zhou Qiang1
1(National Science Library, Chinese Academy of Sciences, Beijing 100190, China)
2(Graduate University of Chinese Academy of Sciences, Beijing 100049, China)
Export: BibTeX | EndNote (RIS)      

After revealing the current research status and features of Mashup tools, this paper introduces some relevant technologies and classification models of Mashup tools. And based on this, the paper designs a new classification model composed of Data Mashup tool, Presentation Mashup tool and Enterprise Mashup tool. In the same time, it analyzes the main functions and crucial technologies of typical Mashup tools.

Key wordsMashup tool      Classification      Enterprise Mashup      Architecture       
Received: 16 October 2009      Published: 25 January 2001


Corresponding Authors: Shanshan Ji     E-mail:
About author:: Ji Shanshan,Li Yu,Zhou Qiang

Cite this article:

Ji Shanshan,Li Yu,Zhou Qiang. Research on Mashup Tools. New Technology of Library and Information Service, 2010, 26(1): 41-45.

URL:     OR

[1] Wikipedia[DB/OL].[2009-09-10].
[2]Koschmider A, Torres V, Pelechano V. Elucidating the Mashup Hype: Definition, Challenges,
Methodical Guide and Tools for Mashups[R/OL].[2009-09-10].
[3] Housingmaps[EB/OL].[2009-09-10].
[4] Forrester: Enterprise Mashups to Hit $700 Million by 2013[EB/OL].
[5] SIMILE Project[EB/OL].[2009-08-24].
[6] Introducing OpenAjax Hub 2.0 and Secure Mashups[EB/OL].[2009-09-10].
[7] Sohei Ikeda, Takakazu Nagamine, Tomio Kamada. Application Framework with
Demand-Driven Mashup for Selective Browsing[C].In:Proceedings of the 10th International
Conference on Information Integration and Web-based Applications & Services,Linz, Austria.
New York, NY, USA: ACM,2008:33-40. 
[8]Wang G L,Yang S H, Han Y B. Mashroom: End-user Mashup Programming Using Nested
[9]Atwood M,Balfanz D,Bounds D, et al. OAuth Core 1.0 Revision [EB/OL].[ 2009-09-10].
[10] 李峰,李春旺.Mashup关键技术研究[J].现代图书情报技术,2009 (1): 44-49.
[11] ICT ROMULUS Report: D4.1-Annual Report on Mashup Integration[R/OL].
[12] Hoyer V,  Fischer M. Market Overview of Enterprise Mashup Tools[C]. In:Proceedings
of the 6th International Conference on Service-oriented Computing,Sydney, Australia. Berlin,
Heidelberg:Springer  Verlag,2008:708-721.
[13] Giusy Di Lorenzo, Hakim Hacid, Hye-Young Paik,et al. Data Integration in Mashups
[EB/OL]. [2009-08-24].
[14] 李春旺,肖伟.集成融汇:概念、模式与应用[J].现代图书情报技术,2008(12):22-26.
[15] Apatar[EB/OL].[2009-09-10].
[16] Netvibes Overview 2009[EB/OL].[2009-09-10].
[17] Hoyer V,  Stanoesvka-Slabeva K,  Janner T, et al. Enterprise Mashups: Design Principles
Towards the Long Tail of User Needs[EB/OL]. [2009-08-24].
[18] Reference Architecture for Enterprise ‘Mashups’[EB/OL]. [2009-08-24].
[19] Javier López, Alberto Pan, Fernando Bellas, et al. Towards a Reference Architecture for
Enterprise Mashups[EB/OL]. [2009-08-24]. http://www.sistedes.ess/TJISBD/Vol-2/No-2/articles/Lopez.pdf.
[20] JackBe Presto: The Enterprise Mashup Platform[EB/OL].[2009-08-24].

[1] Fan Shaoping,Zhao Yuxuan,An Xinying,Wu Qingqiang. Classification Model for Medical Entity Relations with Convolutional Neural Network[J]. 数据分析与知识发现, 2021, 5(9): 75-84.
[2] Chen Jie,Ma Jing,Li Xiaofeng. Short-Text Classification Method with Text Features from Pre-trained Models[J]. 数据分析与知识发现, 2021, 5(9): 21-30.
[3] Zhou Zeyu,Wang Hao,Zhao Zibo,Li Yueyan,Zhang Xiaoqin. Construction and Application of GCN Model for Text Classification with Associated Information[J]. 数据分析与知识发现, 2021, 5(9): 31-41.
[4] Lu Quan, He Chao, Chen Jing, Tian Min, Liu Ting. A Multi-Label Classification Model with Two-Stage Transfer Learning[J]. 数据分析与知识发现, 2021, 5(7): 91-100.
[5] Xie Hao,Mao Jin,Li Gang. Sentiment Classification of Image-Text Information with Multi-Layer Semantic Fusion[J]. 数据分析与知识发现, 2021, 5(6): 103-114.
[6] Yu Bengong,Zhu Xiaojie,Zhang Ziwei. A Capsule Network Model for Text Classification with Multi-level Feature Extraction[J]. 数据分析与知识发现, 2021, 5(6): 93-102.
[7] Meng Zhen,Wang Hao,Yu Wei,Deng Sanhong,Zhang Baolong. Vocal Music Classification Based on Multi-category Feature Fusion[J]. 数据分析与知识发现, 2021, 5(5): 59-70.
[8] Zhang Mengyao, Zhu Guangli, Zhang Shunxiang, Zhang Biao. Grouping Microblog Users of Trending Topics Based on Sentiment Analysis[J]. 数据分析与知识发现, 2021, 5(2): 43-49.
[9] Dong Miao, Su Zhongqi, Zhou Xiaobei, Lan Xue, Cui Zhigang, Cui Lei. Improving PubMedBERT for CID-Entity-Relation Classification Using Text-CNN[J]. 数据分析与知识发现, 2021, 5(11): 145-152.
[10] Feng Hao, Li Shuqing. Multi-layer Cascade Classifier for Credit Scoring with Multiple-Support Vector Machines[J]. 数据分析与知识发现, 2021, 5(10): 28-36.
[11] Wang Yan, Wang Huyan, Yu Bengong. Chinese Text Classification with Feature Fusion[J]. 数据分析与知识发现, 2021, 5(10): 1-14.
[12] Leng Jidong,Lv Xueqiang,Jiang Yang,Li Guolin. Consensus Mechanisms of Consortium Blockchain: A Survey[J]. 数据分析与知识发现, 2021, 5(1): 56-65.
[13] Yu Bengong, Zhu Mengdi. Question Classification Based on Bidirectional GRU with Hierarchical Attention and Multi-channel Convolution[J]. 数据分析与知识发现, 2020, 4(8): 50-62.
[14] Zhao Yang, Zhang Zhixiong, Liu Huan, Ding Liangping. Classification of Chinese Medical Literature with BERT Model[J]. 数据分析与知识发现, 2020, 4(8): 41-49.
[15] Wang Xinyun,Wang Hao,Deng Sanhong,Zhang Baolong. Classification of Academic Papers for Periodical Selection[J]. 数据分析与知识发现, 2020, 4(7): 96-109.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938