Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (2): 56-62    DOI: 10.11925/infotech.1003-3513.2010.02.10
article Current Issue | Archive | Adv Search |
Study on the City Image Network Monitoring System Based on Opinion-mining
Li Gang   Chen Jing   Cheng Mingjie   Kou Guangzeng
(School of Information Management, Wuhan University, Wuhan 430072,China)
Export: BibTeX | EndNote (RIS)      

For it is hard to extract and analyze public information effectively,the paper uses the opinion-mining and the step-by-step sub-model design method to build a system of city image network monitoring. By city reviews mining and sentiment analysis, the paper can identify tendencies and evolution of emotions,and provide the results to government departments using visual interface.

Key wordsOpinion mining      City image network monitoring system      Sentiment analysis      Public sentiment monitoring     
Received: 12 January 2010      Published: 25 February 2010



Corresponding Authors: JingCheng     E-mail:
About author:: Li Gang,Chen Jing,Cheng Mingjie,Kou Guangzeng

Cite this article:

Li Gang,Chen Jing,Cheng Mingjie,Kou Guangzeng. Study on the City Image Network Monitoring System Based on Opinion-mining. New Technology of Library and Information Service, 2010, 26(2): 56-62.

URL:     OR

[1] 徐晓日.网络舆情事件的应急处理研究[J].华北电力大学学报:社会科学版,2007(1):89-92.
[2] 钱爱兵.基于主题的网络舆情分析模型及其实现[J].现代图书情报技术,2008(4):49-55.
[3] 北大方正技术研究院.以科技手段辅助网络舆情突发事件的监测分析——方正智思舆情辅助决策支持系统[J].信息化建设,2005(10):50-52.
[4] 都云程,王海洋,王洪俊.TRS网络舆情监控解决方案[J].信息网络安全,2008(6):69-70.
[5] 黄晓斌,赵超.文本挖掘在网络舆情信息分析中的应用[J].情报科学,2009,27(1):94-99.
[6] Kim S-M, Ho E.Determining the Sentiment of Opinions[C].In: Proceedings of the 20th Conference on Computational Linguistics,Geneva,Switzerland.2004:1367-1373.
[7] Liu B,Hu M,Cheng J.Opinion Observer:Analyzing and Comparing Opinions on the Web[C].In: Proceedings of the 14th International Conference on World Wide Web.New York:ACM Press,2005:342-351.
[8] Hu M,Liu B. Mining and Summarizing Customer Reviews[C]. In:Proceedings of the 2004 ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2004:168-177.
[9] 姚天昉, 程希文, 徐飞玉, 等. 文本意见挖掘综述[J].中文信息学报,2008,22(5):71-80.
[10] Pang B, Lee L. Sentiment Classification Using Machine Learning Techniques[C]. In: Proceedings of the Conference on Empirical Methods in Natural Language Processing.2002: 79-86.
[11] Carenini G, Ng R, Zwart E. Extracting Knowledge from Evaluative Text[C]. In:Proceedings of the 3rd International Conference on Knowledge Capture.2005:11-18.
[12] Wolson T,Hoffmann P,Somasundaran S,et al.Opinion-Finder:A System for Subjectivity Analysis[C]. In:Proceedings of the 2005 Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing.Morristown, NJ,USA:Association for Computational Linguistics,2005:34-35.
[13] Cheng X. Automatic Topic Term Detection and Sentiment Classification for Opinion Mining[D]. Saarbrücken, Germany: The University of Saarland,2007.
[14] 李荣陆. 文本分类若干关键技术研究[D]. 上海:复旦大学, 2005.

[1] Xu Yuemei, Wang Zihou, Wu Zixin. Predicting Stock Trends with CNN-BiLSTM Based Multi-Feature Integration Model[J]. 数据分析与知识发现, 2021, 5(7): 126-138.
[2] Zhong Jiawa,Liu Wei,Wang Sili,Yang Heng. Review of Methods and Applications of Text Sentiment Analysis[J]. 数据分析与知识发现, 2021, 5(6): 1-13.
[3] Liu Tong,Liu Chen,Ni Weijian. A Semi-Supervised Sentiment Analysis Method for Chinese Based on Multi-Level Data Augmentation[J]. 数据分析与知识发现, 2021, 5(5): 51-58.
[4] Wang Yuzhu,Xie Jun,Chen Bo,Xu Xinying. Multi-modal Sentiment Analysis Based on Cross-modal Context-aware Attention[J]. 数据分析与知识发现, 2021, 5(4): 49-59.
[5] Li Feifei,Wu Fan,Wang Zhongqing. Sentiment Analysis with Reviewer Types and Generative Adversarial Network[J]. 数据分析与知识发现, 2021, 5(4): 72-79.
[6] Chang Chengyang,Wang Xiaodong,Zhang Shenglei. Polarity Analysis of Dynamic Political Sentiments from Tweets with Deep Learning Method[J]. 数据分析与知识发现, 2021, 5(3): 121-131.
[7] Zhang Mengyao, Zhu Guangli, Zhang Shunxiang, Zhang Biao. Grouping Microblog Users of Trending Topics Based on Sentiment Analysis[J]. 数据分析与知识发现, 2021, 5(2): 43-49.
[8] Han Pu, Zhang Wei, Zhang Zhanpeng, Wang Yuxin, Fang Haoyu. Sentiment Analysis of Weibo Posts on Public Health Emergency with Feature Fusion and Multi-Channel[J]. 数据分析与知识发现, 2021, 5(11): 68-79.
[9] Zheng Xinman, Dong Yu. Constructing Degree Lexicon for STI Policy Texts[J]. 数据分析与知识发现, 2021, 5(10): 81-93.
[10] Hua Bin, Wu Nuo, He Xin. Integrating Expert Reviews for Government Information Projects with Knowledge Fusion[J]. 数据分析与知识发现, 2021, 5(10): 124-136.
[11] Lv Huakui,Liu Zhenghao,Qian Yuxing,Hong Xudong. Relationship Between Financial News and Stock Market Fluctuations[J]. 数据分析与知识发现, 2021, 5(1): 99-111.
[12] Xu Hongxia,Yu Qianqian,Qian Li. Studying Content Interaction Data with Topic Model and Sentiment Analysis[J]. 数据分析与知识发现, 2020, 4(7): 110-117.
[13] Jiang Lin,Zhang Qilin. Research on Academic Evaluation Based on Fine-Grain Citation Sentimental Quantification[J]. 数据分析与知识发现, 2020, 4(6): 129-138.
[14] Shi Lei,Wang Yi,Cheng Ying,Wei Ruibin. Review of Attention Mechanism in Natural Language Processing[J]. 数据分析与知识发现, 2020, 4(5): 1-14.
[15] Li Tiejun,Yan Duanwu,Yang Xiongfei. Recommending Microblogs Based on Emotion-Weighted Association Rules[J]. 数据分析与知识发现, 2020, 4(4): 27-33.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938