Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (9): 48-55    DOI: 10.11925/infotech.1003-3513.2010.09.09
article Current Issue | Archive | Adv Search |
Research on the Salient Subjects and Their Developing Trends of Foreign Library and Information Science Journals
An Lu, Li Gang
School of Information Management, Wuhan University,Wuhan 430072, China
Export: BibTeX | EndNote (RIS)      

This paper utilizes the Self-Organizing Map(SOM) to analyze the salient subjects among 60 foreign journals in the field of Library and Information Science (LIS) and the development trends of Journal of Information Science (JIS) from 1981 to 2007. An enhanced SOM display method named Attribute Accumulative Matrix is employed to identify 7 groups of salient subjects among the 60 investigated journals. A novel SOM display method named Prevalent Attribute Projection is constructed combined with U-matrix, to analyze the development process and patterns of JIS’ salient subjects in the past 27 years. The research findings reflect the development laws of foreign LIS journals to some extent,and the research methods can provide systematic tool and procedure for the analysis of salient subjects and their development trends among journals.

Key wordsSalient      subject      Development      trends      Library      and      information      journals      SOM     
Received: 06 July 2010      Published: 26 October 2010



Cite this article:

An Lu, Li Gang. Research on the Salient Subjects and Their Developing Trends of Foreign Library and Information Science Journals. New Technology of Library and Information Service, 2010, 26(9): 48-55.

URL:     OR

[1] 马费成,张勤.国内外知识管理研究热点——基于词频的统计分析
[J]. 情报学报 , 2006, 25(2): 163-171.

[2] 屈鹏,吴龙婷,隆捷,等.国际情报学研究主题的聚类分析——基于1996-2003年的LISA数据库
[J]. 情报学报 ,2007,26(6):909-917.

[3] 毕强,滕广青.国外信息资源管理研究进展及热点分析——基于IRMJ和JASIS的分析
[J]. 中国图书馆学报 ,2009,35(5):80-90.

[4] Chua A Y K,Yang C C. The Shift Towards Multi-Disciplinarity in Information Science
[J]. Journal of the American Society for Information Science and Technology, 2008, 59(13): 2156-2170.

[5] 安璐,张进,李纲.自组织映射用于数据分析的方法研究
[J]. 情报学报 ,2009,28(5):720-726.

[6] Zhang J, An L, Tang T, et al. Visual Health Subject Directory Analysis Based on Users’ Traversal Activities
[J]. Journal of the American Society for Information Science, 2009, 60(10): 1977-1994.

[7] Kohonen T, Oja E, Simula O, et al. Engineering Applications of the Self-Organizing Map
[J]. Proceedings of the IEEE, 1996, 84(10):1358-1384.

[8] Kohonen T. New Developments and Applications of Self-Organizing Maps . In: Proceedings of International Workshop on Neural Networks for Identification, Control, Robotics, and Signal/Image Processing.San Francisco: IEEE Press,1996:164-172.

[9] Ultsch A. Maps for the Visualization of High-dimensional Data Spaces .In: Proceedings of Workshop on Self-Organizing Maps (WSOM’03), Kyushu Institute of Technology, Kitakyushu, Japan.2003: 225-230.

[10] 安璐.基于自组织映射的期刊主题研究 . 武汉:武汉大学,2009.

[11] SOM Toolbox . .

[12] Kohonen T. Things You Haven’t Heard about the Self-Organizing Map . In: Proceedings of International Conference on Neural Networks (ICNN), San Francisco,USA.1993: 1147-1156.

[13] Moya-Anegon F, Herrero-Solana V, Jimenez-Contreras E. A Connectionist and Multivariate Approach to Science Maps: The SOM, Clustering and MDS Applied to Library and Information Science Research
[J]. Journal of Information Science, 2006, 32(1): 63-77.

[14] White H, McCain K. Visualizing a Discipline: An Author Co-citation Analysis of Information Science, 1972-1995
[J]. Journal of the American Society for Information Science, 1998, 49(4):327-355.

[1] Shan Xiaohong,Wang Chunwen,Liu Xiaoyan,Han Shengxi,Yang Juan. Identifying Lead Users in Open Innovation Community from Knowledge-based Perspectives[J]. 数据分析与知识发现, 2021, 5(9): 85-96.
[2] Liu Yuanchen, Wang Hao, Gao Yaqi. Predicting Online Music Playbacks and Influencing Factors[J]. 数据分析与知识发现, 2021, 5(8): 100-112.
[3] Han Hui, Liu Xiuwen. Automatic Scoring for Subjective Questions in Maritime Competency Assessment[J]. 数据分析与知识发现, 2021, 5(8): 113-121.
[4] Wang Ruolin, Niu Zhendong, Lin Qika, Zhu Yifan, Qiu Ping, Lu Hao, Liu Donglei. Disambiguating Author Names with Embedding Heterogeneous Information and Attentive RNN Clustering Parameters[J]. 数据分析与知识发现, 2021, 5(8): 13-24.
[5] Tan Ying, Tang Yifei. Extracting Citation Contents with Coreference Resolution[J]. 数据分析与知识发现, 2021, 5(8): 25-33.
[6] Wang Qinjie, Qin Chunxiu, Ma Xubu, Liu Huailiang, Xu Cunzhen. Recommending Scientific Literature Based on Author Preference and Heterogeneous Information Network[J]. 数据分析与知识发现, 2021, 5(8): 54-64.
[7] Xu Yuemei, Wang Zihou, Wu Zixin. Predicting Stock Trends with CNN-BiLSTM Based Multi-Feature Integration Model[J]. 数据分析与知识发现, 2021, 5(7): 126-138.
[8] Huang Mingxuan,Jiang Caoqing,Lu Shoudong. Expanding Queries Based on Word Embedding and Expansion Terms[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[9] Ma Yingxue,Zhao Jichang. Patterns and Evolution of Public Opinion on Weibo During Natural Disasters: Case Study of Typhoons and Rainstorms[J]. 数据分析与知识发现, 2021, 5(6): 66-79.
[10] Gao Yilin,Min Chao. Comparing Technology Diffusion Structure of China and the U.S. to Countries Along the Belt and Road[J]. 数据分析与知识发现, 2021, 5(6): 80-92.
[11] Dong Mei,Chang Zhijun,Zhang Runjie. A Multiple Pattern Matching Algorithm for Specifications of Incremental Metadata for Sci-Tech Literature[J]. 数据分析与知识发现, 2021, 5(6): 135-144.
[12] Lu Linong,Zhu Zhongming,Zhang Wangqiang,Wang Xiaochun. Cross-database Knowledge Integration and Fingerprint of Institutional Repositories with Lingo3G Clustering Algorithm[J]. 数据分析与知识发现, 2021, 5(5): 127-132.
[13] Chen Wenjie,Wen Yi,Yang Ning. Fuzzy Overlapping Community Detection Algorithm Based on Node Vector Representation[J]. 数据分析与知识发现, 2021, 5(5): 41-50.
[14] Ma Yingxue,Gan Mingxin,Xiao Kejun. A Matrix Factorization Recommendation Method with Tags and Contents[J]. 数据分析与知识发现, 2021, 5(5): 71-82.
[15] Xu Zheng,Le Xiaoqiu. Generating AND-OR Logical Expressions for Semantic Features of Categorical Documents[J]. 数据分析与知识发现, 2021, 5(5): 95-103.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938