Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (10): 10-16    DOI: 10.11925/infotech.1003-3513.2010.10.02
article Current Issue | Archive | Adv Search |
Subject Association Analysis Based on CSSCI_Onto
Wang Hao, Su Xinning
Department of Information Management, Nanjing University, Nanjing 210093, China
Export: BibTeX | EndNote (RIS)      

This paper tries to change the traditional analysis mode that using association rule mining to gain the subject relationship based on single standard, and introduces the Ontology mechanism with semantic description capabilities into the knowledge organization of CSSCI academic resource for organizing subject and related concepts by object-oriented approach, so that to establishes CSSCI academic resource networks model based on Ontology. Then subject evaluation method is used to analyze the relationship between subjects annotated in CSSCI_Onto, and knowledge mining technique is also adopted to discover the multi-subject association patterns that users are interested in and implies in original knowledge, by which to obtain analysis conclusion for supporting decision, and to provide factual basis for interdisciplinary cooperation enhancement and cross-disciplinary, frontier-disciplinary emergence and development.

Key wordsCSSCI      Ontology      Subject      association      analysis      Academic      resource      networks      model      Knowledge      organization      Semantic      annotation      Academic      evaluation     
Received: 27 September 2010      Published: 04 January 2011



Cite this article:

Wang Hao, Su Xinning. Subject Association Analysis Based on CSSCI_Onto. New Technology of Library and Information Service, 2010, 26(10): 10-16.

URL:     OR

[1] Berners-Lee T. Semantic Web Road Map . .

[2] 中国社会科学引文索引 . .

[3] 苏新宁. 提升图书情报学学科地位的思考——基于CSSCI的实证分析
[J]. 中国图书馆学报 , 2010(4):47-53.

[4] 金莹, 邓三鸿. 基于关键词被引聚类的人文社会科学学科分析
[J]. 现代图书情报技术 ,2006(9):43-48, 52.

[5] 金莹, 邓三鸿. 基于主题聚类的社会科学地图
[J]. 图书情报工作 , 2007, 51(4):104-108.

[6] 王昊, 苏新宁. 基于本体的CSSCI学术资源网络模型构建及其应用研究
[J]. 情报学报 , 2010, 29(2): 331-341.

[7] Astrova I. Reverse Engineering of Relational Database to Ontologies . In: Proceedings of the ESWC 2004. Heidelberg: Springer-Verlag, 2004:327-341.

[1] Shan Xiaohong,Wang Chunwen,Liu Xiaoyan,Han Shengxi,Yang Juan. Identifying Lead Users in Open Innovation Community from Knowledge-based Perspectives[J]. 数据分析与知识发现, 2021, 5(9): 85-96.
[2] Li Wenna,Zhang Zhixiong. Research on Knowledge Base Error Detection Method Based on Confidence Learning[J]. 数据分析与知识发现, 2021, 5(9): 1-9.
[3] Lu Yunmeng,Liu Tiezhong. Diffusion Model for Tacit Knowledge of Scientific Cooperation Network Based on Relevance: Case Study of Major Sci-Tech Projects[J]. 数据分析与知识发现, 2021, 5(9): 10-20.
[4] Che Hongxin,Wang Tong,Wang Wei. Comparing Prediction Models for Prostate Cancer[J]. 数据分析与知识发现, 2021, 5(9): 107-114.
[5] Zhou Yang,Li Xuejun,Wang Donglei,Chen Fang,Peng Lijuan. Visualizing Knowledge Graph for Explosive Formula Design[J]. 数据分析与知识发现, 2021, 5(9): 42-53.
[6] Han Hui, Liu Xiuwen. Automatic Scoring for Subjective Questions in Maritime Competency Assessment[J]. 数据分析与知识发现, 2021, 5(8): 113-121.
[7] Xu Zengxulin, Xie Jing, Yu Qianqian. Designing New Evaluation Model for Talents[J]. 数据分析与知识发现, 2021, 5(8): 122-131.
[8] Wang Ruolin, Niu Zhendong, Lin Qika, Zhu Yifan, Qiu Ping, Lu Hao, Liu Donglei. Disambiguating Author Names with Embedding Heterogeneous Information and Attentive RNN Clustering Parameters[J]. 数据分析与知识发现, 2021, 5(8): 13-24.
[9] Chai Qingfeng, Shi Linyan, Mei Shan, Xiong Haitao, He Huixin. Extracting Knowledge Elements of Sci-Tech Literature Based on Artificial and Machine Features[J]. 数据分析与知识发现, 2021, 5(8): 132-144.
[10] Xu Yuemei, Wang Zihou, Wu Zixin. Predicting Stock Trends with CNN-BiLSTM Based Multi-Feature Integration Model[J]. 数据分析与知识发现, 2021, 5(7): 126-138.
[11] Chen Xingyue, Ni Liping, Ni Zhiwei. Extracting Financial Events with ELECTRA and Part-of-Speech[J]. 数据分析与知识发现, 2021, 5(7): 36-47.
[12] Li Wenna, Zhang Zhixiong. Entity Alignment Method for Different Knowledge Repositories with Joint Semantic Representation[J]. 数据分析与知识发现, 2021, 5(7): 1-9.
[13] Zhu Hou,Fang Qingyan. Quantifying and Examining Privacy Paradox of Social Media Users[J]. 数据分析与知识发现, 2021, 5(7): 111-125.
[14] Shen Kejie, Huang Huanting, Hua Bolin. Constructing Knowledge Graph with Public Resumes[J]. 数据分析与知识发现, 2021, 5(7): 81-90.
[15] Lu Quan, He Chao, Chen Jing, Tian Min, Liu Ting. A Multi-Label Classification Model with Two-Stage Transfer Learning[J]. 数据分析与知识发现, 2021, 5(7): 91-100.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938