Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (10): 17-22    DOI: 10.11925/infotech.1003-3513.2010.10.03
article Current Issue | Archive | Adv Search |
Comparative Study on ConExp and Lattice Miner
Teng Guangqing, Bi Qiang
School of Management,Jilin University, Changchun 130022,China
Export: BibTeX | EndNote (RIS)      

This paper firstly builds concept lattice of some ball-games with ConExp1.3 and Lattice Miner1.4. Then it compares the quality and operation of the two tools from the basic information, modification of formal context, layout of lattice, mining of association rules and storage management. ConExp stresses the concept and the relationships of concepts, and personalized presentation of the concept lattice; and Lattice Miner has advantages to deal with the complex problem, extract association rules, and support semantic network. It makes the foundation for the research based on concept lattice tool.

Key wordsConExp      Lattice      Miner      Formal      context      Concept      lattice      Association      rule     
Received: 06 September 2010      Published: 04 January 2011



Cite this article:

Teng Guangqing, Bi Qiang. Comparative Study on ConExp and Lattice Miner. New Technology of Library and Information Service, 2010, 26(10): 17-22.

URL:     OR

[1] Wille R. Restructuring Lattice Theory: An Approach Based on Hierarchies of Concept . In: Proceedings of the 7th International Conference, ICFCA 2009. LNCS 5548. Berlin: Springer-Verlag, 2009: 314-339.

[2] Overview on ConExp . .

[3] Becker P, Correia H J. The ToscanaJ Suite for Implementing Conceptual Information Systems . In: Proceedings of Formal Concept Analysis 2005. LNCS 3626. Berlin: Springer-Verlag, 2005: 324–348.

[4] Lattice Miner 1.4 Beta . .

[5] Szathmary L, Napoli A. CORON: A Framework for Levelwise Itemset Mining Algorithms . .

[6] Concept Explorer . .

[7] Lattice Miner . .

[8] Wormuth B, Becker P. Introduction to Formal Concept Analysis . . http://www.

[9] Bělohlávek Radim. Introduction to Formal Concept Analysis . . esf/ucebni/formal.pdf.

[10] Wille R. Methods of Conceptual Knowledge Processing . In: Proceedings of the 4th International Conference, ICFCA 2006. LNCS 3874. Berlin: Springer-Verlag, 2006: 1-29.

[11] Ganter B, Wille R. Applied Lattice Theory: Formal Concept Analysis . .

[12] Concept Explorer:The User Guide . .

[13] Stumme G. Efficient Data Mining Based on Formal Concept Analysis . In: Proceedings of the 13th International Conference on Database and Expert Systems Applications. LNCS 2453. London: Springer-Verlag, 2002: 534-546.

[14] Burmeister P. Formal Concept Analysis with ConImp: Introduction to the Basic Features . .

[15] Galicia’s Features . .

[1] Tan Ying, Tang Yifei. Extracting Citation Contents with Coreference Resolution[J]. 数据分析与知识发现, 2021, 5(8): 25-33.
[2] Song Ruoxuan,Qian Li,Du Yu. Identifying Academic Creative Concept Topics Based on Future Work of Scientific Papers[J]. 数据分析与知识发现, 2021, 5(5): 10-20.
[3] Yi Huifang,Liu Xiwen. Analyzing Patent Technology Topics with IPC Context-Enhanced Context-LDA Model[J]. 数据分析与知识发现, 2021, 5(4): 25-36.
[4] Wang Yuzhu,Xie Jun,Chen Bo,Xu Xinying. Multi-modal Sentiment Analysis Based on Cross-modal Context-aware Attention[J]. 数据分析与知识发现, 2021, 5(4): 49-59.
[5] Hyonil Kim,Ou Shiyan. Identifying Citation Texts with Unsupervised Method[J]. 数据分析与知识发现, 2021, 5(1): 66-77.
[6] Liu Ping,Peng Xiaofang. Calculating Word Similarities Based on Formal Concept Analysis[J]. 数据分析与知识发现, 2020, 4(5): 66-74.
[7] Zheng Songyin,Tan Guoxin,Shi Zhongchao. Recommending Tourism Attractions Based on Segmented User Groups and Time Contexts[J]. 数据分析与知识发现, 2020, 4(5): 92-104.
[8] Li Tiejun,Yan Duanwu,Yang Xiongfei. Recommending Microblogs Based on Emotion-Weighted Association Rules[J]. 数据分析与知识发现, 2020, 4(4): 27-33.
[9] Wei Wei,Guo Chonghui,Xing Xiaoyu. Annotating Knowledge Points & Recommending Questions Based on Semantic Association Rules[J]. 数据分析与知识发现, 2020, 4(2/3): 182-191.
[10] Wang Sili,Zhu Zhongming,Yang Heng,Liu Wei. Automatically Identifying Hypernym-Hyponym Relations of Domain Concepts with Patterns and Projection Learning[J]. 数据分析与知识发现, 2020, 4(11): 15-25.
[11] Haixia Sun,Panpan Deng,Jiao Li,Liu Shen,Qing Qian. Automatic Concept Update Strategy Towards Heterogeneous Terminology Integration[J]. 数据分析与知识发现, 2020, 4(1): 121-130.
[12] Jie Ma,Yan Ge,Hongyu Pu. Survey of Attribute Reduction Methods[J]. 数据分析与知识发现, 2020, 4(1): 40-50.
[13] Mingxuan Huang,Shoudong Lu,Hui Xu. Cross-Language Information Retrieval Based on Weighted Association Patterns and Rule Consequent Expansion[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[14] Shaohua Qiang,Yunlu Luo,Yupeng Li,Peng Wu. Ontology Reasoning for Financial Affairs with RBR and CBR[J]. 数据分析与知识发现, 2019, 3(8): 94-104.
[15] Yong Zhang,Shuqing Li,Yongshang Cheng. Mining Algorithm for Weighted Association Rules Based on Frequency Effective Length[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938