Please wait a minute...
New Technology of Library and Information Service  2010, Vol. 26 Issue (10): 49-53    DOI: 10.11925/infotech.1003-3513.2010.10.08
article Current Issue | Archive | Adv Search |
Collaborative Filtering Recommendation Algorithm Based on Improved Trustworthiness
Jin Yaya, Mou Yuanchao
School of Business,East China University of Science and Technology,Shanghai 200237,China
Export: BibTeX | EndNote (RIS)      

This paper suggests that trust is another important factor effecting recommendation result and introduces trust- worthiness into traditional collaborative filtering algorithm. It proposes a collaborative filtering recommendation algorithm based on improved trustworthiness,which combines similarity and trustworthiness to substitute traditional similarity weight. The experiment results can prove the validity and superiority of the proposed algorithm.

Key wordsCollaborative      filtering      Trustworthiness      Similarity      Recommendation     
Received: 19 July 2010      Published: 04 January 2011



Cite this article:

Jin Yaya, Mou Yuanchao. Collaborative Filtering Recommendation Algorithm Based on Improved Trustworthiness. New Technology of Library and Information Service, 2010, 26(10): 49-53.

URL:     OR

[1] Sarwar B M,Karypis G,Konstan J A,et a1.Application of Dimensionality Reduction in Recommender System-A Case Study . .

[2] 桑艳艳,刘培刚,李勇.拟合用户兴趣演变特性的协作过滤推荐算法
[J]. 情报学报 , 2009,28(1):109-113.

[3] 董祥和,齐莉丽,董荣.优化的协作过滤推荐算法
[J]. 计算机工程与应用 , 2009,45(8): 229-232.

[4] Lam S K,Riedl J.Shilling Recommender Systems for Fun and Profit .In:Proceedings of the 13th International Conference on World Wide Web,New York,USA.2004:393-402.

[5] 郭艳红,邓贵仕,锥春雨.基于信任因子的协同过滤推荐算法
[J]. 计算机工程 ,2008,34(20):1-7.

[6] Massa P,Avesani P.Trust—aware Collaborative Filtering for Recommender Systems .In: Proceedings of International Conference on Cooperative Information Systems.Berlin:Springer,2004:492-508.

[7] 郭艳红.推荐系统的协同过滤算法与应用研究 .大连:大连理工大学,2008.

[8] 卢竹兵,詹雁.一种基于信任网络的协同过滤推荐策略
[J]. 西南师范大学学报 ,2008, 33(2):123-126.

[9] Tyrone G, Morris S.A Survey of Trust in Internet Applications
[J].IEEE Communications Surveys and Tutorials,2000,4(4):2-16.

[10] 卢竹兵.基于信任关系的协同过滤推荐策略研究 .重庆:西南大学, 2008.

[11] O’Donovan J,Smyth B.Eliciting Trust Values from Recommendation Errors .In: Proceedings of the 18th International Florida Artificial Intelligence Research Society Conference,Clearwater Beach,Florida,USA. 2005:289-294.

[1] Han Hui, Liu Xiuwen. Automatic Scoring for Subjective Questions in Maritime Competency Assessment[J]. 数据分析与知识发现, 2021, 5(8): 113-121.
[2] Wang Qinjie, Qin Chunxiu, Ma Xubu, Liu Huailiang, Xu Cunzhen. Recommending Scientific Literature Based on Author Preference and Heterogeneous Information Network[J]. 数据分析与知识发现, 2021, 5(8): 54-64.
[3] Liu Wenbin, He Yanqing, Wu Zhenfeng, Dong Cheng. Sentence Alignment Method Based on BERT and Multi-similarity Fusion[J]. 数据分析与知识发现, 2021, 5(7): 48-58.
[4] Ruan Xiaoyun,Liao Jianbin,Li Xiang,Yang Yang,Li Daifeng. Interpretable Recommendation of Reinforcement Learning Based on Talent Knowledge Graph Reasoning[J]. 数据分析与知识发现, 2021, 5(6): 36-50.
[5] Ma Yingxue,Gan Mingxin,Xiao Kejun. A Matrix Factorization Recommendation Method with Tags and Contents[J]. 数据分析与知识发现, 2021, 5(5): 71-82.
[6] Xiang Zhuoyuan,Liu Zhicong,Wu Yu. Adaptive Recommendation Model Based on User Behaviors[J]. 数据分析与知识发现, 2021, 5(4): 103-114.
[7] Yan Qiang,Zhang Xiaoyan,Zhou Simin. Extracting Keywords Based on Sememe Similarity[J]. 数据分析与知识发现, 2021, 5(4): 80-89.
[8] Feng Yong,Liu Yang,Xu Hongyan,Wang Rongbing,Zhang Yonggang. Recommendation Model Incorporating Neighbor Reviews for GRU Products[J]. 数据分析与知识发现, 2021, 5(3): 78-87.
[9] Lv Xueqiang,Luo Yixiong,Li Jiaquan,You Xindong. Review of Studies on Detecting Chinese Patent Infringements[J]. 数据分析与知识发现, 2021, 5(3): 60-68.
[10] Li Danyang, Gan Mingxin. Music Recommendation Method Based on Multi-Source Information Fusion[J]. 数据分析与知识发现, 2021, 5(2): 94-105.
[11] Wu Yanwen, Cai Qiuting, Liu Zhi, Deng Yunze. Digital Resource Recommendation Based on Multi-Source Data and Scene Similarity Calculation[J]. 数据分析与知识发现, 2021, 5(11): 114-123.
[12] Li Zhenyu, Li Shuqing. Deep Collaborative Filtering Algorithm with Embedding Implicit Similarity Groups[J]. 数据分析与知识发现, 2021, 5(11): 124-134.
[13] Ding Hao, Ai Wenhua, Hu Guangwei, Li Shuqing, Suo Wei. A Personalized Recommendation Model with Time Series Fluctuation of User Interest[J]. 数据分析与知识发现, 2021, 5(11): 45-58.
[14] Yang Chen, Chen Xiaohong, Wang Chuhan, Liu Tingting. Recommendation Strategy Based on Users’ Preferences for Fine-Grained Attributes[J]. 数据分析与知识发现, 2021, 5(10): 94-102.
[15] Sheng Jiaqi, Xu Xin. Expanding Scholar Labels with Research Similarity and Co-authorship Network[J]. 数据分析与知识发现, 2020, 4(8): 75-85.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938