Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (2): 81-86    DOI: 10.11925/infotech.1003-3513.2011.02.13
article Current Issue | Archive | Adv Search |
Books Recommended Model Based on Association Rules Comprehensive Evaluation
Lu Yonghe, Cao Lichao
School of Information Management, Sun Yat-Sen University, Guangzhou 510006, China
Export: BibTeX | EndNote (RIS)      

With the research of association rules comprehensive evaluation, this article proposes a books recommended model based on the factors of Support, Confidence, Jaccard Interestingness, Attraction and Profit, and it is also oriented to online bookstores and digital libraries. At the same time, this article determines the weights of the factors in the model by the entropy method and the relative comparison method, and research on the algorithm of the model. Finally, it verifies the function of the model by the developed online bookstore system. The running results of the online bookstore system show that the model can provide the recommended book for users excellently.

Key wordsAssociation rules comprehensive evaluation      Book recommended model      Online bookstore      Digital library      Entropy metho     
Received: 20 January 2011      Published: 25 March 2011



Cite this article:

Lu Yonghe, Cao Lichao. Books Recommended Model Based on Association Rules Comprehensive Evaluation. New Technology of Library and Information Service, 2011, 27(2): 81-86.

URL:     OR

[1] 李凯敏. 基于数据挖掘的网上书店的设计与实现
[J]. 硅谷 ,2010(1):108.

[2] 丁雪. 基于数据挖掘的图书智能推荐系统研究
[J]. 情报理论与实践 ,2010,33(5):107-110.

[4] 赵麟. 基于最大频繁模式挖掘算法进行书目推荐系统的设计与实现
[J]. 现代图书情报技术 ,2010(5):23-28.

[5] 徐嘉莉,陈佳. 一种快速的个性化书目推荐方法
[J]. 现代图书情报技术 ,2010(2):79-84.

[6] Liu D R, Ke C K, Lee J Y, et al. Knowledge Maps for Composite E-Services: A Mining-Based System Platform Coupling with Recommendations
[J]. Expert Systems with Applications, 2008,34(1):700-716.

[7] Kim C, Kim J. A Recommendation Algorithm Using Multi-Level Association Rules .In: Proceedings of the 2003 IEEE/WIC International Conference on Web Intelligence. Halifax: IEEE Computer Society Press, 2003:524-527.

[8] 苏占东,游福成,杨炳儒. 关联规则的综合评价方法研究与实例验证
[J]. 计算机应用 ,2004,24(10):17-20.

[9] 王剑,常晋义,苏剑峰. 关联规则评价体系的改进
[J]. 常熟理工学院学报 ,2010,24(2):115-118.

[10] 谭学清,罗琳,周洞汝. 关联规则兴趣度度量方法的比较研究
[J]. 情报学报 ,2007,26(2):266-270.

[11] Tan P N, Kumar V, Srivastava J. Selecting the Right Interestingness Measure for Association Patterns .In:Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM Press, 2002:32-41.

[12] Cabena P, Hadjinian P, Stadler R,et al. Discovering Data Mining: From Concept to Implementation
[M]. New Jersey: Prentice Hall Inc., 1998:44-45.

[13] 黄嘉满. 面向零售业的关联规则挖掘的研究与实现 . 上海:上海交通大学,2007.

[14] 陈国宏,李美娟,陈衍泰. 组合评价及其计算机集成系统研究
[M]. 北京:清华大学出版社, 2007:177-181.

[1] Qi Yunfei,Zhao Yuxiang,Zhu Qinghua. Linked Data for Mobile Visual Search System of Digital Library[J]. 数据分析与知识发现, 2017, 1(1): 81-90.
[2] Hong Liang,Qian Chen,Fan Xing. Context-aware Recommendation System for Mobile Digital Libraries[J]. 现代图书情报技术, 2016, 32(7-8): 110-119.
[3] Liu Jian,Bi Qiang,Ma Zhuo. Assessment of Digital Library’s Micro-services: An Empirical Study[J]. 现代图书情报技术, 2016, 32(5): 22-29.
[4] Chen Guo, Hu Changping. Research on the Structural Features of Keyword Network of Scientific Research Areas:An Empirical Study of LIS[J]. 现代图书情报技术, 2014, 30(7): 84-91.
[5] Xiong Yongjun, Yuan Xiaoyi. Design and Implementation of Automatic Monitoring System about Library Document Database Running State[J]. 现代图书情报技术, 2014, 30(7): 127-132.
[6] Wang Chuanqing, Bi Qiang. System Model of Digital Library Automatic Semantic Annotation Tool[J]. 现代图书情报技术, 2014, 30(6): 17-24.
[7] Wei Meng. Literature Recommendation Using Evolution Patterns[J]. 现代图书情报技术, 2014, 30(4): 20-26.
[8] Hu Changping, Chen Guo. A New Feature Selection Method Based on Term Contribution in Co-word Analysis[J]. 现代图书情报技术, 2013, 29(7/8): 89-93.
[9] Wang Zhongyi, Xia Lixin, Shi Yijin, Zheng Senmao. The Creation and Publishing of Middle Linked Data in Digital Library[J]. 现代图书情报技术, 2013, (5): 28-33.
[10] Liu Wei, Xia Cuijuan, Zhang Chunjing. Big Data and Linked Data: The Emerging Data Technology for the Future of Librarianship[J]. 现代图书情报技术, 2013, (4): 2-9.
[11] Zhou Shanshan, Bi Qiang, Gao Junfeng. A Method of Information Retrieval Results Visualization Based on Social Network Analysis[J]. 现代图书情报技术, 2013, 29(11): 81-85.
[12] Chen Junjie, Huang Guofan. Construction Strategy and Main Technology of the Mobile Library APP——Take iOS for Instance[J]. 现代图书情报技术, 2012, (9): 75-80.
[13] Dong Li, Zeng Ting, Chen Wu, Jiang Airong. A Review of ICADL 2011[J]. 现代图书情报技术, 2012, 28(7): 33-39.
[14] Qiao Jianzhong. Statistical Characteristics Based Web Page Relevance Judgment Strategy for the “Type” Topics Crawled[J]. 现代图书情报技术, 2012, 28(6): 9-16.
[15] Liu Jiantao. Implement of Translation and Interpretation Bookmarklet in Library Based on Cloud Service[J]. 现代图书情报技术, 2012, 28(6): 84-88.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938