Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (2): 87-93    DOI: 10.11925/infotech.1003-3513.2011.02.14
article Current Issue | Archive | Adv Search |
Real-Time Search Suggestions Based on the Clustering of the User’ s Query Intent
Zhou Zhicheng
Shanghai Institute of Technology Library, Shanghai 200235, China
Export: BibTeX | EndNote (RIS)      

Aimed at the defects that the search engine offers too many results and is lack of considering the differences between the user’s personalities, this paper offers a way to give users real-time search suggestions of multi theme according to the user’s search intent in order to help the users describe the information in need more accurately, as well as narrow the gap between the query word and the user’s real intentions to increase the search efficiency. At the same time, it uses K-means to cluster users who are similar in their intent eigenvalue of resources categories, narrow the range of the nearest neighbor of the searching target, as well as to speed up the real-time response of the search suggestions. The experiment result shows that this method is practical.

Key wordsClustering      Search suggestions      Query intent      Search engine     
Received: 29 November 2010      Published: 25 March 2011



Cite this article:

Zhou Zhicheng. Real-Time Search Suggestions Based on the Clustering of the User’ s Query Intent. New Technology of Library and Information Service, 2011, 27(2): 87-93.

URL:     OR

[1] 巴特利 约翰.搜:通向世界的巨型引擎

[2] 陈冬林,聂规划.基于商品属性隐性评分的协同过滤算法研究
[J]. 计算机应用 ,2006,26(4):966-968.

[3] 吴健,董金祥.关于个性化网站的研究
[J]. 计算机应用研究 ,2000,17(9):21-22.

[4] Mecca G, Raunich S, Pappalardo A. A New Algorithm for Clustering Search Results
[J]. Data & Knowledge Engineering, 2007,62(3):504-522.

[5] Ruthven I. Re-examining the Potential Effectiveness of Interactive Query Expansion . In: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval,Toronto. 2003:213-220.

[6] Speretta M, Gauch S. Personalized Search Based on User Search Histories .In: Proceedings of the 2005 IEEE/WIC/ACM International Conference on Web Intelligence, France. 2005:622-628.

[7] 王辉,高利军,王听忠.个性化服务中基于用户聚类的协同过滤推荐
[J]. 计算机应用 ,2007,27(5):1225-1227.

[8] 孙多.基于兴趣度的聚类协同过滤推荐系统的设计
[J]. 安徽大学学报:自然科学版 ,2007,31(5):19-22.

[9] 张字平,谢小林.基于AJAX技术实现搜索引擎中的搜索提示功能
[J]. 东华理工大学学报:自然科学版, 2008,31(1):81-84.

[10] Kwak M, Cho D S. Collaborative Filtering with Automatic Rating for Recommendation . In: Proceedings of ISIE 2001. New York: Industrial Electronics, 2001(1):625-628.

[11] Mun H, Ok S, Woo Y. An Automatic Rating Technique Based on XML Document
[J]. Computer Science, 2006,2347:424-427.

[12] Lee U, Liu Z, Cho J. Automatic Identification of User Goals in Web Search . In: Proceedings of the 14th International Conference on World Wide Web. New York: ACM Press, 2005:391-400.

[13] Lee H C, Lee S J, Chung Y J. A Study on the Improved Collaborative Filtering Algorithm for Recommender System . In: Proceedings of the 5th ACIS International Conference on Software Engineering Research, Management and Applications. Washington, DC, USA:IEEE Computer Society, 2007:297-304.

[14] 刘慧婷,倪志伟.客户行为的有效聚类
[J]. 计算机工程与应用 ,2010,46(4):12-24.

[15] Adomavicius G, Tuzhilin A. Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions
[J]. IEEE Transactions on Knowledge and Data Engineering, 2005,17(6):734-749.

[16] Zhang M. Enhancing Diversity in Top-N Recommendation . In: Proceedings of the 3rd ACM Conference on Recommender Systems. New York: ACM, 2009.

[17] MovieLens Data Sets . .

[1] Wang Ruolin, Niu Zhendong, Lin Qika, Zhu Yifan, Qiu Ping, Lu Hao, Liu Donglei. Disambiguating Author Names with Embedding Heterogeneous Information and Attentive RNN Clustering Parameters[J]. 数据分析与知识发现, 2021, 5(8): 13-24.
[2] Wang Xiwei,Jia Ruonan,Wei Yanan,Zhang Liu. Clustering User Groups of Public Opinion Events from Multi-dimensional Social Network[J]. 数据分析与知识发现, 2021, 5(6): 25-35.
[3] Lu Linong,Zhu Zhongming,Zhang Wangqiang,Wang Xiaochun. Cross-database Knowledge Integration and Fingerprint of Institutional Repositories with Lingo3G Clustering Algorithm[J]. 数据分析与知识发现, 2021, 5(5): 127-132.
[4] Zhang Mengyao, Zhu Guangli, Zhang Shunxiang, Zhang Biao. Grouping Microblog Users of Trending Topics Based on Sentiment Analysis[J]. 数据分析与知识发现, 2021, 5(2): 43-49.
[5] Ding Hao, Ai Wenhua, Hu Guangwei, Li Shuqing, Suo Wei. A Personalized Recommendation Model with Time Series Fluctuation of User Interest[J]. 数据分析与知识发现, 2021, 5(11): 45-58.
[6] Yang Chen, Chen Xiaohong, Wang Chuhan, Liu Tingting. Recommendation Strategy Based on Users’ Preferences for Fine-Grained Attributes[J]. 数据分析与知识发现, 2021, 5(10): 94-102.
[7] Yu Fengchang,Cheng Qikai,Lu Wei. Locating Academic Literature Figures and Tables with Geometric Object Clustering[J]. 数据分析与知识发现, 2021, 5(1): 140-149.
[8] Wu Jinming,Hou Yuefang,Cui Lei. Automatic Expression of Co-occurrence Clustering Based on Indexing Rules of Medical Subject Headings[J]. 数据分析与知识发现, 2020, 4(9): 133-144.
[9] Wen Pingmei,Ye Zhiwei,Ding Wenjian,Liu Ying,Xu Jian. Developments of Named Entity Disambiguation[J]. 数据分析与知识发现, 2020, 4(9): 15-25.
[10] Xi Yunjiang, Du Diedie, Liao Xiao, Zhang Xuehong. Analyzing & Clustering Enterprise Microblog Users with Supernetwork[J]. 数据分析与知识发现, 2020, 4(8): 107-118.
[11] Yang Xu,Qian Xiaodong. Synchronous Clustering Algorithm for Social Networks Based on Improved Vicsek Model[J]. 数据分析与知识发现, 2020, 4(4): 119-128.
[12] Xiong Huixiang,Li Xiaomin,Li Yueyan. Group Recommendation Based on Attribute Mining of Book Reviews[J]. 数据分析与知识发现, 2020, 4(2/3): 214-222.
[13] Wei Jiaze,Dong Cheng,He Yanqing,Liu Zhihui,Peng Keyun. Detecting News Topics Based on Equalized Paragraph and Sub-topic Vector[J]. 数据分析与知识发现, 2020, 4(10): 70-79.
[14] Huaming Zhao,Li Yu,Qiang Zhou. Determining Best Text Clustering Number with Mean Shift Algorithm[J]. 数据分析与知识发现, 2019, 3(9): 27-35.
[15] Shan Li,Yehui Yao,Hao Li,Jie Liu,Karmapemo. ISA Biclustering Algorithm for Group Recommendation[J]. 数据分析与知识发现, 2019, 3(8): 77-87.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938