Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (4): 35-41    DOI: 10.11925/infotech.1003-3513.2011.04.06
Current Issue | Archive | Adv Search |
Fine-grained User Preference Modeling Based on Tag Networks
Yi Ming1,2, Mao Jin2, Deng Weihua3
1. School of Information Management, Wuhan University, Wuhan 430072,China;
2. Department of Information Management,Huazhong Normal University, Wuhan 430079, China;
3. College of Economics & Management, Huazhong Agriculture University, Wuhan 430070,China
Export: BibTeX | EndNote (RIS)      
Abstract  Aiming at the existing problems in the process of extracting user preferences, a new approach that to organize user generated tags by constructing site-level and user-level tag networks on the basis of social network analysis is proposed. Then, topic based tag documents and topic based user networks are formed. A fine-grained user preference model is formed by computing the similarity between them. The experimental results show that the model is scientific.
Key wordsTag network      Fine-grained preference      Preference modeling     
Received: 07 March 2011      Published: 11 June 2011



Cite this article:

Yi Ming, Mao Jin, Deng Weihua. Fine-grained User Preference Modeling Based on Tag Networks. New Technology of Library and Information Service, 2011, 27(4): 35-41.

URL:     OR

[1] Ji A T,Yeon C,Kim H,et al. Collaborative Tagging in Recommender Systems [C]. In:Proceedings of the 20th Australian Joint Conference on Artificial Intelligence. Berlin:Springer-Verlag,2007:377-386.

[2] Gemmell J,Shepitsen A,Mobasher B,et al. Personalizing Navigation in Folksonomies Using Hierarchical Tag Clustering [C]. In: Proceedings of the 10th International Conference on Data Warehousing and Knowledge Discovering. Heidelberg:Spring-Verlag, 2008:196-205.

[3] 魏建良,朱庆华.基于社会化标注的个性化推荐研究进展[J].情报学报,2010,29(4):625-633.

[4] 赵鹏,蔡庆生,王清毅.交联网络中的可重叠社团结构分析算法[J].华南理工大学学报:自然科学版,2008,36(5):19-23.

[5] 赵鹏.复杂网络与互联网个性化信息服务的研究[D].合肥:中国科学技术大学,2006.

[6] Derenyi I,Palla G,Vicsek T. Clique Percolation in Random Networks [J]. Physical Review Letters,2005,94(16):1-4.

[7] 何大韧,刘宗华,汪秉宏.复杂系统与复杂网络[M].北京:高等教育出版社,2009.

[8] Boragatti S P. Centrality and Network Flow [J]. Social Networks,2005,27(10):55-71.

[9] Baeza-Yates R, Ribeiro-Neto B.现代信息检索[M]. 王知津,贾福新,郑红军,等译. 北京:机械工业出版社,2005:20.

[10] 宣照国,苗静,党延忠.基于扩展邻居的协同过滤算法[J].情报学报,2010,29(3):443-448.
[1] Wang Zhongqun, Jiang Sheng, Xiu Yu, Huang Subin, Wang Qiansong. Information Resource Recommendation Method Based on Dynamic Tag-Resource Network[J]. 现代图书情报技术, 2015, 31(3): 49-57.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938