Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (4): 48-51    DOI: 10.11925/infotech.1003-3513.2011.04.08
Current Issue | Archive | Adv Search |
Query Expansion Oriented Algorithm of Feature-words Frequent Itemsets Mining
Huang Mingxuan1, Ma Ruixing2, Lan Huihong1
1. Department of Math and Computer Science, Guangxi College of Education, Nanning 530023, China;
2. Department of Computer Science, Guangxi Economic Mangement Cadre College, Nanning 530007, China
Export: BibTeX | EndNote (RIS)      
Abstract  In this paper, a novel algorithm is proposed to mine feature-words frequent itemsets in text database, in order to obtain high-quality expansion terms for query expansion. This algorithm uses the support to measure the frequent itemsets, and only to mine those frequent itemsets containing original query terms and non- query terms synchronously. It can tremendously enhance the mining efficiency. The experimental results demonstrate that the algorithm is more efficient and more feasible than traditional ones.
Key wordsFrequent itemset      Mining      Support      Query expansion     
Received: 15 February 2011      Published: 11 June 2011



Cite this article:

Huang Mingxuan, Ma Ruixing, Lan Huihong. Query Expansion Oriented Algorithm of Feature-words Frequent Itemsets Mining. New Technology of Library and Information Service, 2011, 27(4): 48-51.

URL:     OR

[1] Agrawal R, Srikant R. Fast Algorithms for Mining Association Rules[C]. In:Proceedings of the 20th International Conference on Very Large Data Bases.1994:487-499.

[2] Han J, Pei J, Yin Y. Mining Frequent Patterns Without Candidate Generation[C]. In:Proceedings of 2000 ACM-SIGMOD International Conference Management of Data (SIGMOD’00).2000: 1-12.

[3] Burdick D, Calimlim M, Gehrke J. MAFIA: A Maximal Frequent Itemset Algorithm for Transactional Databases [C].In:Proceedings of the 17th International Conference on Data Engineering. Heidelberg: IEEE, 2001:443-452.

[4] Li Q,Zhou X,Wang L,et al. Mining Maximal Frequent Pattems Using Minimal Combination Algorithm[J].Application Research of Computers,2008,25(3):702-704.

[5] 崔贯勋,李梁,王柯柯,等. 关联规则挖掘中Apriori算法的研究与改进[J].计算机应用,2010,30(11):2952-2955.

[6] 王强. 基于事务标识列表的关联规则挖掘算法[J]. 现代图书情报技术,2008(8):63-69.

[7] Cui H, Wen J R, Nie J Y,et al. Query Expansion by Mining User Logs [J]. IEEE Transactions on Knowledge and Data Engineering, 2003,15(4): 829-839.

[8] Zhang C, Qin Z,Yan X. Association-Based Segmentation for Chinese-Crossed Query Expansion [J]. IEEE Intelligent Informatics Bulletin, 2005,5 (1): 18-25.

[9] Qin Z, Liu L, Zhang S. Mining Term Association Rules for Heuristic Query Construction[C]. In:Proceedings of the 8th Pacific-Asia Conference(PAKDD 2004).2004: 145-154.

[10] Song M, Song I Y,Hu X,et al. Integration of Association Rules and Ontology for Semantic-based Query Expansion[C]. In:Proceedings of the 7th International Congress on Data Warehouse and Knowledge Discovery (DAWAK’05).2005: 326-335.

[11]Fonseca B M, Golgher P B, De Moura E S, et al. Discovering Search Engine Related Query Using Association Rules [J]. Journal of Web Engineering,2003, 2(4): 215-227.

[12] 黄名选,严小卫,张师超.基于矩阵加权关联规则挖掘的伪相关反馈查询扩展[J].软件学报,2009,20(7):1854-1865.

[13] 黄名选,严小卫,张师超. 基于完全加权关联规则的局部反馈查询扩展[J].计算机工程与应用, 2008, 44(7): 190-192.
[1] Huang Mingxuan,Jiang Caoqing,Lu Shoudong. Expanding Queries Based on Word Embedding and Expansion Terms[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[2] Ma Yingxue,Zhao Jichang. Patterns and Evolution of Public Opinion on Weibo During Natural Disasters: Case Study of Typhoons and Rainstorms[J]. 数据分析与知识发现, 2021, 5(6): 66-79.
[3] Xu Guang,Ren Ming,Song Chengyu. Extracting China’s Economic Image from Western News[J]. 数据分析与知识发现, 2021, 5(5): 30-40.
[4] Dai Bing,Hu Zhengyin. Review of Studies on Literature-Based Discovery[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[5] Xie Wang, Wang Lizhen, Chen Hongmei, Zeng Lanqing. Identifying Relationship Between Pollution Sources and Cancer Cases with Spatial Ordered Pair Patterns[J]. 数据分析与知识发现, 2021, 5(2): 14-31.
[6] Zheng Xinman, Dong Yu. Constructing Degree Lexicon for STI Policy Texts[J]. 数据分析与知识发现, 2021, 5(10): 81-93.
[7] Hua Bin, Wu Nuo, He Xin. Integrating Expert Reviews for Government Information Projects with Knowledge Fusion[J]. 数据分析与知识发现, 2021, 5(10): 124-136.
[8] Hu Guangwei, Teng Jie, Liu Lu. Mining Topics of Social Appeals and Interprovincial Differences in Government-People Interaction——Case Study of E-mail Corpus of Provincial Leaders[J]. 数据分析与知识发现, 2021, 5(10): 15-27.
[9] Feng Hao, Li Shuqing. Multi-layer Cascade Classifier for Credit Scoring with Multiple-Support Vector Machines[J]. 数据分析与知识发现, 2021, 5(10): 28-36.
[10] Yu Chuanming, Wang Manyi, Lin Hongjun, Zhu Xingyu, Huang Tingting, An Lu. A Comparative Study of Word Representation Models Based on Deep Learning[J]. 数据分析与知识发现, 2020, 4(8): 28-40.
[11] Xu Hongxia,Yu Qianqian,Qian Li. Studying Content Interaction Data with Topic Model and Sentiment Analysis[J]. 数据分析与知识发现, 2020, 4(7): 110-117.
[12] Xia Tian. Extracting Key-phrases from Chinese Scholarly Papers[J]. 数据分析与知识发现, 2020, 4(7): 76-86.
[13] Shen Zhuo,Li Yan. Mining User Reviews with PreLM-FT Fine-Grain Sentiment Analysis[J]. 数据分析与知识发现, 2020, 4(4): 63-71.
[14] Zhong Lizhen,Ma Minshu,Zhou Changfeng. Forecasting Airfare Based on Route Characteristics[J]. 数据分析与知识发现, 2020, 4(2/3): 192-199.
[15] Ding Shengchun,Yu Fengyang,Li Zhen. Identifying Potential Trending Topics of Online Public Opinion[J]. 数据分析与知识发现, 2020, 4(2/3): 29-38.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938