Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (5): 1-6    DOI: 10.11925/infotech.1003-3513.2011.05.01
Current Issue | Archive | Adv Search |
Study on Linkage Creation Strategies of Web Data
Deng Lanlan1,2, Li Chunwang1
1. National Science Library, Chinese Academy of Sciences, Beijing 100190, China;
2. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Export: BibTeX | EndNote (RIS)      
Abstract  The linkage creation algorithms and strategies are surveyed. Based on some available work, properties similarity measurements, graph similarity measurements, as well as integrated similarity measurements to objects in homogeneous dataset are analyzed, and different schema mapping methodologies with/without instance information under heterogeneous data environment are compared. Afterwards, inferring and transfering approaches conducive to rich semantic link establishment are highlighted. Finally, challenges of linkage creation are proposed.
Key wordsLinked data      Semantic      Web Linkage creation      Knowledge mashup     
Received: 08 April 2011      Published: 11 July 2011



Cite this article:

Deng Lanlan, Li Chunwang. Study on Linkage Creation Strategies of Web Data. New Technology of Library and Information Service, 2011, 27(5): 1-6.

URL:     OR

[1] Elmagarmid A K, Ipeirotis P G, Verykios V S. Duplicate Record Detection: A Survey[J]. IEEE Transactions on Knowledge and Data Engineering, 2007,19(1):1-16.

[2] Bhattacharya I, Getoor L. Iterative Record Linkage for Cleaning and Integration . In: Proceedings of the 9th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery(DMKD'04), Paris, France. 2004:11-18.

[3] Winkler W E, Thibaudeau Y. An Application of the Fellegi-Sunter Model of Record Linkage to the 1990 U.S. Decennial Census . Technical Report Statistical Research Report Series RR91/09, U.S. Bureau of the Census, Washington, D.C., 1991.

[4] Winkler W E. The State of Record Linkage and Current Research Problems . Technical Report Statistical Research Report Series RR99/04, U.S. Bureau of the Census, Washington, D.C., 1999.

[5] Voz J, Bizer C, Gaedke M, et al. Silk-A Link Discovery Framework for the Web of Data . In: Proceedings of the 2nd Workshop on Linked Data on the Web, Madrid, Spain. 2009.

[6] Nikolov A, Uren V, De Motta E, et al. Integration of Semantically Annotated Data by the KnoFuss Architecture . In: Proceedings of the 16th International Conference on Knowledge Engineering: Practice and Patterns(EKAW'08), Acitrezza, Italy. 2008:265-274.

[7] Jentzsch A, Zhao J, Hassanzadeh O, et al. Linking Open Drug Data . In: Proceedings of the International Conference on Semantic Systems (I-SEMANTICS'09), Graz, Austria. 2009.

[8] Hassanzadeh O, Consens M. Linked Movie Data Base . In: Proceedings of the 2nd Workshop on Linked Data on the Web, Madrid, Spain. 2009.

[9] Raimond Y, Sutton C, Sandler M. Automatic Interlinking of Music Datasets on the Semantic Web . In: Proceedings of LDOW2008, Beijing, China. 2008.

[10] Glaser H, Millard I C. RKBPlatform: Opening up Services in the Web of Data . In: Proceedings of International Semantic Web Conference(ISWC2009), Washington, USA. 2009.

[11] Thor A, Rahm E. MOMA-A Mapping-based Object Matching System . In: Proceedings of CIDR2007, California, USA. 2007:247-258.

[12] Mi J, Chen H, Lu B, et al. Deriving Similarity Graphs from Open Linked Data on Semantic Web . In: Proceedings of the 10th IEEE International Conference on Information Reuse & Integration(IEEE IRI2009), Nevada, USA. 2009:157-162.

[13] Kobilarov G, Scott T, Raimond Y, et al. Media Meets Semantic Web-How the BBC Uses DBpedia and Linked Data to Make Connections . In: Proceedings of the 6th European Semantic Web Conference on the Semantic Web: Research and Applications (ESWC2009), Heraklion, Greece. 2009:723-737.

[14] Sleeman J, Finin T. A Machine Learning Approach to Linking FOAF Instances . In: Proceedings of the AAAI Spring Symposium on Linked Data Meets Artificial Intelligence. 2010:107-113.

[15] Ehrig M. Ontology Alignment: Bridging the Semantic Gap[M]. 1st Edition. New York: Springer, 2006.

[16] Shvaiko P, Euzenat J. A Survey of Schema-based Matching Approaches[J]. Journal on Data Semantics, 2005(4):146-171.

[17] Rahm E, Bernstein P A. A Survey of Approaches to Automatic Schema Matching[J]. International Journal on Very Large Data Bases, 2001,10 (4): 334-350.

[18] Euzenat J, Shvaiko P. Ontology Matching[M]. Heidelberg: Springer-Verlag, 2007.

[19] Evermann J. Theories of Meaning in Schema Matching: A Review[J]. Journal of Database Management, 2008, 19(3):55-82.

[20] Jian N, Hu W, Cheng G, et al. Falcon-AO: Aligning Ontologies with Falcon . In: Proceedings of K-CAP Workshop on Integrating Ontologies, Banff, CA. 2005:87-93.

[21] Jain P, Hitzler P, Sheth A P, et al. Ontology Alignment for Linked Open Data . In: Proceedings of ISWC2010, Shanghai, China. 2010:401-416.

[22] Jain P, Yeh P Z, Verma K, et al. Contextual Ontology Alignment of LOD with an Upper Ontology: A Case Study with Proton . In: Proceedings of ESWC2011, Heraklion, Greece. 2011.

[23] Nikolov A, Uren V, Motta E, et al. Handling Instance Coreferencing in the KnoFuss Architecture . In: Proceedings of ESWC 2008, Tenerife, Spain. 2008.

[24] Nikolov A, Motta E. Capturing Emerging Relations Between Schema Ontologies on the Web of Data . In: Proceedings of COLD2010, Shanghai, China. 2010.

[25] Par R, Knoblock C A, Ambite J L. Aligning Ontologies of Geospatial Linked Data . In: Proceedings of Workshop on Linked Spatiotemporal Data, in GIScience 2010, Zurich.2010.

[26] Nikolov A, Uren V, Motta E. Data Linking: Captureing and Utilising Implicit Schema-level Relations . In: Proceedings of LDOW2010, Raleigh, USA. 2010.

[27] Cudr'e-Mauroux P, Haghani P, Jost M, et al. idMesh: Graph-based Disambiguation of Linked Data . In: Proceedings of WWW 2009, Madrid, Spain. 2009.

[28] Rodriguez M A. A Graph Analysis of the Linked Data Cloud[J]. Computer and Information Science:Miscellaneous Papers, 2009(3):1-7.
[1] Li Wenna, Zhang Zhixiong. Entity Alignment Method for Different Knowledge Repositories with Joint Semantic Representation[J]. 数据分析与知识发现, 2021, 5(7): 1-9.
[2] Xu Zheng,Le Xiaoqiu. Generating AND-OR Logical Expressions for Semantic Features of Categorical Documents[J]. 数据分析与知识发现, 2021, 5(5): 95-103.
[3] Zhang Guobiao,Li Jie. Detecting Social Media Fake News with Semantic Consistency Between Multi-model Contents[J]. 数据分析与知识发现, 2021, 5(5): 21-29.
[4] Shi Xiang,Liu Ping. Extraction and Representation of Domain Knowledge with Semantic Description Model and Knowledge Elements——Case Study of Information Retrieval[J]. 数据分析与知识发现, 2021, 5(4): 123-133.
[5] Zhang Jinzhu, Yu Wenqian. Topic Recognition and Key-Phrase Extraction with Phrase Representation Learning[J]. 数据分析与知识发现, 2021, 5(2): 50-60.
[6] Shao Qi,Mu Dongmei,Wang Ping,Jin Chunyan. Identifying Subjects of Online Opinion from Public Health Emergencies[J]. 数据分析与知识发现, 2020, 4(9): 68-80.
[7] Wei Tingxin,Bai Wenlei,Qu Weiguang. Sense Prediction for Chinese OOV Based on Word Embedding and Semantic Knowledge[J]. 数据分析与知识发现, 2020, 4(6): 109-117.
[8] Deng Siyi,Le Xiaoqiu. Coreference Resolution Based on Dynamic Semantic Attention[J]. 数据分析与知识发现, 2020, 4(5): 46-53.
[9] Zhu Lu,Tian Xiaomeng,Cao Sainan,Liu Yuanyuan. Subspace Cross-modal Retrieval Based on High-Order Semantic Correlation[J]. 数据分析与知识发现, 2020, 4(5): 84-91.
[10] Zhang Dongyu,Cui Zijuan,Li Yingxia,Zhang Wei,Lin Hongfei. Identifying Noun Metaphors with Transformer and BERT[J]. 数据分析与知识发现, 2020, 4(4): 100-108.
[11] Zhang Runtong,Chen Donghua,Zhao Hongmei,Zhu Xiaomin. Computer-Assisted ICD-11 Coding Method Based on Chinese Semantic Analysis[J]. 数据分析与知识发现, 2020, 4(4): 44-55.
[12] Wei Wei,Guo Chonghui,Xing Xiaoyu. Annotating Knowledge Points & Recommending Questions Based on Semantic Association Rules[J]. 数据分析与知识发现, 2020, 4(2/3): 182-191.
[13] Tian Zhonglin,Wu Xu,Xie Xiaqing,Xu Jin,Lu Yueming. Real-time Analysis Model for Short Texts with Relationship Graph of Domain Semantics[J]. 数据分析与知识发现, 2020, 4(2/3): 239-248.
[14] Yang Lin, Huang Xiaoshuo, Wang Jiayang, Li Jiao. Extracting Clinical Scale Information and Identifying Trial Cohorts with Semantic Alignment[J]. 数据分析与知识发现, 2020, 4(12): 33-44.
[15] Zhang Jinzhu,Zhu Lipeng,Liu Jingjie. Unsupervised Cross-Language Model for Patent Recommendation Based on Representation[J]. 数据分析与知识发现, 2020, 4(10): 93-103.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938