Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (5): 49-54    DOI: 10.11925/infotech.1003-3513.2011.05.08
Current Issue | Archive | Adv Search |
The Online Comments Signature Words Selection with the Title and Description of Goods
Liang Changyong, Wang Qianqian, Lu Wenxing, Ding Yong
School of Management, Hefei University of Technology, Hefei 230009, China
Export: BibTeX | EndNote (RIS)      
Abstract  At present, title and description of goods are rarely considered in the research of online reviews at home and abroad, this makes the mining process blindly and mining results are not high accurate. In this article, the authors use the cluster analysis method, consider the title and description, set up a three-level mining model to analyze the online comments, at the same time, a location-clustering-algorithm is proposed. Experimental results show that the method improves the accuracy of mining and reduces the mining time.
Key wordsCluster analysis      Signature words      Location      K-center-algorithm     
Received: 16 March 2011      Published: 11 July 2011



Cite this article:

Liang Changyong, Wang Qianqian, Lu Wenxing, Ding Yong. The Online Comments Signature Words Selection with the Title and Description of Goods. New Technology of Library and Information Service, 2011, 27(5): 49-54.

URL:     OR

[1] Nicholls C, Song F. Comparison of Feature Selection Methods for Sentiment Analysis . In:Proceedings of the Canadian Conference on Artificial Intelligence,Advances in Artificial Intelligence Lecture Notes in Computer Science. 2010: 286-289.

[2] Li Z, Zhang M,Ma S,et al. Automatic Extraction for Product Feature Words from Comments on the Web . In: Proceedings of the 5th Asia Information Retrieval Symposium on Information Retrieval Technology.2009:112-123.

[3] Yang Y,Wu Y,Li J.Text Similarity Calculation Based on Potential Feature Words[J]. Computer Engineering and Design, 2011,14(2):240-245.

[4] 余传明.从用户评论中挖掘产品属性——基于SOM的实现[J]. 现代图书情报技术, 2009(5):3-6.

[5] 钟敏娟,万常选,焦贤沛.基于聚类和词组抽取的XML查询扩展[J]. 情报学报, 2010,29(4):11-13.

[6] Kobayashi N, Inui K, Matsumoto Y,et al. Collecting Evaluative Expressions for Opinion Extraction . In:Proceedings of the 1st Conference of International Joint Conference on Natural Language Processing.2004: 596-605.

[7] 姚天昉,程希文,徐飞玉,等.文本意见挖掘综述[J]. 中文信息学报, 2008,22(3):71-80.

[8] Han J,Kamber M.Date Mining: Concepts and Techniques[M].北京:机械工业出版,2001:234-235.
[1] Wang Hongbin,Wang Jianxiong,Zhang Yafei,Yang Heng. Topic Recognition of News Reports with Imbalanced Contents[J]. 数据分析与知识发现, 2021, 5(3): 109-120.
[2] Hongfei Ling,Shiyan Ou. Review of Automatic Labeling for Topic Models[J]. 数据分析与知识发现, 2019, 3(9): 16-26.
[3] Yan Wen,Lijian Ma,Qingtian Zeng,Wenyan Guo. POI Recommendation Based on Geographic and Social Relationship Preferences[J]. 数据分析与知识发现, 2019, 3(8): 30-39.
[4] Mingzhu Sun,Jing Ma,Lingfei Qian. Extracting Keywords Based on Topic Structure and Word Diagram Iteration[J]. 数据分析与知识发现, 2019, 3(8): 68-76.
[5] Qingtian Zeng,Mingdi Dai,Chao Li,Hua Duan,Zhongying Zhao. Discovering Important Locations with User Representation and Trace Data[J]. 数据分析与知识发现, 2019, 3(6): 75-82.
[6] Liu Zhuchen,Chen Hao,Yu Yanhua,Li Jie. Extracting Keywords with TextRank and Weighted Word Positions[J]. 数据分析与知识发现, 2018, 2(9): 74-79.
[7] Mu Dongmei,Jin Shan,Ju Yuanhong. Finding Association Between Diseases and Genes from Literature Abstracts[J]. 数据分析与知识发现, 2018, 2(8): 98-106.
[8] Hua Lingfeng,Yang Gaoming,Wang Xiujun. Recommending Diversified News Based on User’s Locations[J]. 数据分析与知识发现, 2018, 2(5): 94-104.
[9] Fan Xinyue,Cui Lei. Using Text Mining to Discover Drug Side Effects: Case Study of PubMed[J]. 数据分析与知识发现, 2018, 2(3): 79-86.
[10] Xiao Yanhui,Wang Xin,Feng Wen’gang,Tian Huawei,Wu Shaozhong,Li Lihua. Predicting Crime Locations Based on Long Short Term Memory and Convolutional Neural Networks[J]. 数据分析与知识发现, 2018, 2(10): 15-20.
[11] He Yue,Wang Aixin,Feng Yue,Wang Li. Optimizing Layouts of Outpatient Pharmacy Based on Association Rules[J]. 数据分析与知识发现, 2018, 2(1): 99-108.
[12] Chen Runwen,Qiu Yong,Huang Wenbin,Wang Jun. Analyzing Private College Students’ Online Lifestyle with Web-logs[J]. 数据分析与知识发现, 2017, 1(8): 31-38.
[13] Wang Xueying,Zhang Zixuan,Wang Hao,Deng Sanhong. Evaluating Brands of Agriculture Products: A Literature Review[J]. 数据分析与知识发现, 2017, 1(7): 13-21.
[14] Cui Jiawang,Li Chunwang. Identifying Semantic Relations of Clusters Based on Linked Data[J]. 数据分析与知识发现, 2017, 1(4): 57-66.
[15] Sun He,Li Shuqin,Lv Xueqiang,Liu Kehui. Retrieving Geographic Information for Micro-blog’s City Complaints[J]. 现代图书情报技术, 2016, 32(3): 58-66.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938