Please wait a minute...
New Technology of Library and Information Service  2011, Vol. 27 Issue (5): 77-82    DOI: 10.11925/infotech.1003-3513.2011.05.12
Current Issue | Archive | Adv Search |
Recognizing Named Entity from Free-text Customer Reviews——A Maximum Entropy Model-based Approach
Yu Chuanming1,2, Huang Jianqiu2, Guo Fei2
1. School of Information Safety and Engineering, Zhongnan University of Economics and Law, Wuhan 430073, China;
2. Business School, University of Shanghai for Science and Technology, Shanghai 200093, China
Export: BibTeX | EndNote (RIS)      
Abstract  This paper introduces the concept of Named Entity Recognition (NER), analyzes two basic approaches, the rule-based approach and the statistical approach, and conducts an empirical study on Chinese dish name recognition based on the theory of Maximum Entropy Model (MEM). According to the characteristics of Chinese named entity, 6 feature templates are designed. Experimental results show that adding tagging features to the basic simple feature template can efficiently improve the performance of Named Entity Recognition. The features in order to improve recognition performance are as follow: tagging features, combination of POS features, forward POS dependency features and word form features.
Key wordsNamed entity recognition      Maximum entropy model      User reviews      Text mining     
Received: 28 April 2011      Published: 11 July 2011



Cite this article:

Yu Chuanming, Huang Jianqiu, Guo Fei. Recognizing Named Entity from Free-text Customer Reviews——A Maximum Entropy Model-based Approach. New Technology of Library and Information Service, 2011, 27(5): 77-82.

URL:     OR

[1] Grishman R, Sundheim B. Message Understanding Conference-6: A Brief History . In: Proceedings of the 16th International Conference on Computational Linguistics (COLING), Kopenhagen.1996:466-471.

[2] Srihari R K, Li W, Cornell T, et al. InfoXtract: A Customizable Intermediate Level Information Extraction Engine [J]. Journal of Natural Language Engineering, 2008, 14(1): 33-69.

[3] Hirschman L, Gaizauskas R. Natural Language Question Answering:The View from Here [J]. Journal of Natural Language Engineering, 2001, 7(4):275-300.

[4] Frost R A, Hafiz R, Callaghan P. Parser Combinators for Ambiguous Left-Recursive Grammars . In: Proceedings of the 10th International Symposium on Practical Aspects of Declarative Languages (PADL), ACM-SIGPLAN, San Francisco.2008,4902: 167-181.

[5] Geer D. Statistical Translation Gains Respect [J]. IEEE Computer, 2005,38(10):18-21.

[6] Halpin H, Robu V, Shepherd H. The Complex Dynamics of Collaborative Tagging . In: Proceedings of the 16th International Conference on the World Wide Web (WWW'07), Banff, Canada. New York, NY, USA:ACM Press, 2007:211-220.

[7] Manning C D, Schütze H. Foundations of Statistical Natural Language Processing [M]. 1st Edition. MIT Press, 1999.

[8] Farmakiotou D, Karkaletsis V, Koutsias J, et al. Rule-based Named Entity Recognition for Greek Financial Texts . In: Proceedings of the Workshop on Computational Lexicography and Multimedia Dictionaries. 2000:75-78.

[9] 李楠,郑荣廷,吉久明,等.基于启发式规则的中文化学物质命名识别研究[J]. 现代图书情报技术 ,2010(5):13-17.

[10] Yang T. Computational Verb Decision Trees [J]. International Journal of Computational Cognition, 2006, 4 (4): 34-46.

[11] Bechet F, Nasr A, Genet F. Tagging Unknown Proper Names Using Decision Trees . In: Proceedings of the 38th Annual Meeting of the Association for Computational Linguistics, HongKong, China.2000:77-84.

[12] Rabiner L R. A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition .// Waibel A, Lee K F. Readings in Speech Recognition[M]. San Francisco, CA, USA:Morgan Kaufmann Publishers Inc., 1990: 267-296.

[13] Zhou G, Su J. Named Entity Recognition Using an HMM-based Chunk Tagger . In: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics.2002:473-480.

[14] Uffink J. Can the Maximum Entropy Principle be Explained as a Consistency Requirement? [J]. Studies in History and Philosophy of Modern Physics, 1995, 26(3): 223-261.

[15] Borthwick A E. A Maximum Entropy Approach to Named Entity Recognition . New York, NY, USA:New York University, 1999.

[16] Moens M F. Information Extraction: Algorithms and Prospects in a Retrieval Context [M]. New York: Springer, 2006: 105-106.

[17] Berger A L, Pietra V J D, Pietra S A D. A Maximum Entropy Approach to Natural Language Processing [J]. Computational Linguistics, 1996, 22(1):39-71.

[18] 曲晓棠, 沈晓红. 基于最大熵模型的中文命名实体识别研究[J]. 科技信息 ,2008(30):15-17.
[1] Huang Mingxuan,Jiang Caoqing,Lu Shoudong. Expanding Queries Based on Word Embedding and Expansion Terms[J]. 数据分析与知识发现, 2021, 5(6): 115-125.
[2] Xu Guang,Ren Ming,Song Chengyu. Extracting China’s Economic Image from Western News[J]. 数据分析与知识发现, 2021, 5(5): 30-40.
[3] Dai Bing,Hu Zhengyin. Review of Studies on Literature-Based Discovery[J]. 数据分析与知识发现, 2021, 5(4): 1-12.
[4] Yu Chuanming, Wang Manyi, Lin Hongjun, Zhu Xingyu, Huang Tingting, An Lu. A Comparative Study of Word Representation Models Based on Deep Learning[J]. 数据分析与知识发现, 2020, 4(8): 28-40.
[5] Xu Chenfei, Ye Haiying, Bao Ping. Automatic Recognition of Produce Entities from Local Chronicles with Deep Learning[J]. 数据分析与知识发现, 2020, 4(8): 86-97.
[6] Xia Tian. Extracting Key-phrases from Chinese Scholarly Papers[J]. 数据分析与知识发现, 2020, 4(7): 76-86.
[7] Gao Yuan,Shi Yuanlei,Zhang Lei,Cao Tianyi,Feng Jun. Reconstructing Tour Routes Based on Travel Notes[J]. 数据分析与知识发现, 2020, 4(2/3): 165-172.
[8] Ma Jianxia,Yuan Hui,Jiang Xiang. Extracting Name Entities from Ecological Restoration Literature with Bi-LSTM+CRF[J]. 数据分析与知识发现, 2020, 4(2/3): 78-88.
[9] Du Jian. Measuring Uncertainty of Medical Knowledge: A Literature Review[J]. 数据分析与知识发现, 2020, 4(10): 14-27.
[10] Liu Jingru,Song Yang,Jia Rui,Zhang Yipeng,Luo Yong,Ma Jingdong. A BiLSTM-CRF Model for Protected Health Information in Chinese[J]. 数据分析与知识发现, 2020, 4(10): 124-133.
[11] Peng Guan,Yuefen Wang. Advances in Patent Network[J]. 数据分析与知识发现, 2020, 4(1): 26-39.
[12] Mingxuan Huang,Shoudong Lu,Hui Xu. Cross-Language Information Retrieval Based on Weighted Association Patterns and Rule Consequent Expansion[J]. 数据分析与知识发现, 2019, 3(9): 77-87.
[13] Yanan Yang,Wenhui Zhao,Jian Zhang,Shen Tan,Beibei Zhang. Visualizing Policy Texts Based on Multi-View Collaboration[J]. 数据分析与知识发现, 2019, 3(6): 30-41.
[14] Han Huang,Hongyu Wang,Xiaoguang Wang. Automatic Recognizing Legal Terminologies with Active Learning and Conditional Random Field Model[J]. 数据分析与知识发现, 2019, 3(6): 66-74.
[15] Mengji Zhang,Wanyu Du,Nan Zheng. Predicting Stock Trends Based on News Events[J]. 数据分析与知识发现, 2019, 3(5): 11-18.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938