Please wait a minute...
New Technology of Library and Information Service  2011, Vol. Issue (11): 31-37    DOI: 10.11925/infotech.1003-3513.2011.11.05
Current Issue | Archive | Adv Search |
A Method of Data Collecting to Improve the Precision of Filtering User Preference
Zhao Yan1, Su Yuzhao2,3, Guan Tao1
1. Department of Computer Science & Application, Zhengzhou Institute of Aeronautical Industry Management, Zhengzhou 450015, China;
2. National Science Library, Chinese Academy of Sciences, Beijing 100190, China;
3. Graduate University of Chinese Academy of Sciences, Beijing 100049, China
Export: BibTeX | EndNote (RIS)      
Abstract  Using the methods of association analysis and clustering in the field of data mining, the paper focuses on the theories and methods of discovering user interests and points out the limitations of standard Web log. So it proposes a method of customized Web log in order to enhance the precision of user interests and preferences. The outcome of experiment shows that,by the method,Web log data hidden in the association rules as well as interests and preferences of similar users can be found, the precision of filtering user interest can be improved at the same time.
Key wordsInformation filtering      User preferences      Personalization recommending system      Data collecting     
Received: 05 September 2011      Published: 06 January 2012
:  G350 TP311  

Cite this article:

Zhao Yan, Su Yuzhao, Guan Tao. A Method of Data Collecting to Improve the Precision of Filtering User Preference. New Technology of Library and Information Service, 2011, (11): 31-37.

URL:     OR

[1] Denning P J.Electronic Junk[J]. Communications of the ACM, 1982, 25(3):163-165.
[2] Etzioni O.The World Wide Web: Quagmire or Gold Mine[J]. Communications of the ACM, 1996,39(11):65-68.
[3] Mobasher B. Data Mining for Web Personalization[J]. Lecture Notes in Computer Science, 2007: 90-135.
[4] Asunka S, Chae H S, Hughes B, et al. Understanding Academic Information Seeking Habits Through Analysis of Web Server Log Files: The Case of the Teachers College Library Website[J]. The Journal of Academic Librarianship, 2009,35(1):33-45.
[5] Breeding M.Analyzing Web Server Logs to Improve a Site's Usage[J]. Computers in Libraries, 2005, 10(25):26-29.
[6] Apache Log Files Version 2.2 . (2010-01-01).
[7] IIS Log File Format (IIS 6.0) .(2010-01-01). WindowsServer2003/Library/IIS/676400bc-8969-4aa7-851a-9319490a9bbb.mspx?mfr=true.
[8] Han J. Conference Tutorial Notes: Data Mining Techniques . In: Proceedings of ACM SIGMOD International Conference on Management of Data (SIGMOD'96),Montreal, Canada.1996.
[9] Discovering Hidden Value in Your Data Warehouse .
[10] Lu H, Setiono R, Liu H. Effective Data Mining Using Neural Networks[J]. IEEE Transactions on Knowledge and Data Engineering, 1996, 8 (6): 957-961.
[11] Fisher D. Optimization and Simplication of Hierarchical Clustering . In: Proceedings of the 1st International Conference on Knowledge Discovery and Data Mining (KDD'95), Montreal, Canada. 1995:118-123.
[12] Arning A, Agrawal R, Raghavan P. A Linear Method for Deviation Detection in Large Databases . In:Proceedings of the 2nd International Conference on Knowledge Discovery and Data Mining (KDD'96),Portlan, Oregon. 1996.
[13] Mostafa J, Mukhopadhyay S, Lam W, et al. A Multilevel Approach to Intelligent Information Filtering: Model, System, and Evaluation[J]. ACM Transactions on Information Systems, 1997, 15(4):368-399.
[14] 李广建.面向信息机构的嵌入式NSTL资源集成服务系统的设计与实现[J]. 现代图书情报技术, 2009 (6):2-7.
[15] Srivastava J, Cooley R, Deshpande M, et al.Web Usage Mining: Discovery and Applications of Usage Patterns from Web Data[J]. ACM SIGKDD Explorations Newsletter, 2000,1(2):12-23.
[16] Scheffer T. Finding Association Rules That Trade Support Optimally Against Confidence .In:Proceedings of the 5th European Conference on Principles of Data Mining and Knowledge Discovery.2001:424-435.
[17] Scheffer T, Wrobel S. Finding the Most Interesting Patterns in a Database Quickly by Using Sequential Sampling[J]. Journal of Machine Learning Research, 2002,3:833-862.
[18] García E, Romero C, Ventura S, et al.Evaluating Web Based Instructional Models Using Association Rule Mining . In:Proceedings of the 17th International Conference on User Modeling, Adaptation, and Personalization.2009:22-26.
[19] Yang Y, Guan X, You J.CLOPE: A Fast and Effective Clustering Algorithm for Transactional Data . In:Proceedings of the 8th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.2002:682-687.
[1] Wang Weijun, Song Meiqing. A Collaborative Filtering Personalized Recommendation Algorithm Through Directionally Mining Users’ Preferences[J]. 现代图书情报技术, 2014, 30(6): 25-32.
[2] Yang Zhizhuo,Han Xie. An Algorithm of Text Information Filtering Based on Feature Extraction[J]. 现代图书情报技术, 2008, 24(4): 29-34.
[3] Huang Bo, Zhang Yihua,Cheng Shaomin,Yang Huai. Human-computer Cooperation Information Filtering Method on Major Subject Navigation[J]. 现代图书情报技术, 2007, 2(8): 30-33.
[4] Cheng Ni,Cui Jianhai,Wang Jun. Overview of Research on Foreign Information Filtering Systems[J]. 现代图书情报技术, 2005, 21(6): 30-38.
[5] Li Yu,Liu Yi,Shao Jing. A WebPAC-based United Library Catalog Retrieval System[J]. 现代图书情报技术, 2005, 21(11): 53-56.
[6] Huang Xiaobin,Xia Mingchun,Ye Chuxuan. A Study on Filtering System Based on Digital Library[J]. 现代图书情报技术, 2004, 20(6): 6-10.
[7] Liu Baisong. A Study on Information Filtering for the Digital Library[J]. 现代图书情报技术, 2003, 19(6): 23-26.
[8] Liu Weicheng,Jiao Yuying. Method and Relative Technologies on Network Information Filtering[J]. 现代图书情报技术, 2002, 18(3): 48-50.
[9] Mei Haiyan. Research on Information Filtering[J]. 现代图书情报技术, 2002, 18(2): 44-47.
[10] Song Ling,Ma Jun. A Analyse and Study on Information Retrieval in Internet[J]. 现代图书情报技术, 2001, 17(1): 37-40.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938