Please wait a minute...
New Technology of Library and Information Service  2011, Vol. Issue (11): 44-47    DOI: 10.11925/infotech.1003-3513.2011.11.07
Current Issue | Archive | Adv Search |
Research of Personalized Book Recommender System of University Library Based on Collaborative Filter
Dong Kun
Library of South-Central University for Nationalities, Wuhan 430074, China
Export: BibTeX | EndNote (RIS)      
Abstract  Aiming at the disadvantages of insufficient mining and analysis of readers' information needs existing in the active book recommendation service of university library, the paper brings forward a construction of personalized book recommender system based on collaborative filter. The system imports the factors of faculty, role, education and the readers' records of visiting the reading rooms to construct the reader's characteristic model. By mining and analyzing the characteristic model which uses optimized collaboration filter algorithm, the system can produce the personalized book recommendation to reader.And the experiment proves that the system is efficient and practical.
Key wordsCollaborative filter      Information service      Data mining      Data warehouse     
Received: 01 July 2011      Published: 06 January 2012
:  G205.7  

Cite this article:

Dong Kun. Research of Personalized Book Recommender System of University Library Based on Collaborative Filter. New Technology of Library and Information Service, 2011, (11): 44-47.

URL:     OR

[1] 熊拥军,陈春颖.基于关联挖掘技术的数字图书馆个性化推送服务[J]. 图书情报工作, 2010,54(1):125-129.
[2] 曹美琴.数据挖掘在图书馆个性化服务中的应用研究 .西安:西北大学,2008.
[3] Bresse J S,Heckerman D,Kadie C.Empirical Analysis of Predictive Algorithms for Collaborative Filtering .In:Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence. San Francisco:Morgan Kaufmann,1998:43-52.
[4] Agrawal R,Imielinski T,Swami A. Mining Associations Between Sets of Items in Large Databases .In:Proceedings of the ACM SIGMOD International Conference on Management of Date. 1993:207-216.
[5] 邵伟.基于领域知识的协同过滤推荐研究 .保定:河北大学,2010.
[6] 常富洋,林鸿飞,许侃.基于用户向量扩展的协同推荐方法[J]. 情报学报, 2010,29(4):688-694.
[7] Sarwar B,Karypis G,Konstan J,et al.Item-based Collaborative Filtering Recommendation Algorithms .In:Proceedings of the 10th International World Wide Web Conference. New York:ACM Press,2001:285-295.
[8] 柯平,高洁.信息管理概论[M].北京:科学出版社,2007:205-207.
[1] Chang Zhijun,Qian Li,Xie Jing,Wu Zhenxin,Zhang Hu,Yu Qianqian,Wang Ying,Wang Yongji. Big Data Platform for Sci-Tech Literature Based on Distributed Technology[J]. 数据分析与知识发现, 2021, 5(3): 69-77.
[2] Xie Wang, Wang Lizhen, Chen Hongmei, Zeng Lanqing. Identifying Relationship Between Pollution Sources and Cancer Cases with Spatial Ordered Pair Patterns[J]. 数据分析与知识发现, 2021, 5(2): 14-31.
[3] Li Zhenyu, Li Shuqing. Deep Collaborative Filtering Algorithm with Embedding Implicit Similarity Groups[J]. 数据分析与知识发现, 2021, 5(11): 124-134.
[4] Yang Chen, Chen Xiaohong, Wang Chuhan, Liu Tingting. Recommendation Strategy Based on Users’ Preferences for Fine-Grained Attributes[J]. 数据分析与知识发现, 2021, 5(10): 94-102.
[5] Shen Zhihong,Zhao Zihao,Wang Haibo. Big Data Technology Stack Shifting: From SQL Centric to Graph Centric[J]. 数据分析与知识发现, 2020, 4(7): 50-65.
[6] Yang Heng,Wang Sili,Zhu Zhongming,Liu Wei,Wang Nan. Recommending Domain Knowledge Based on Parallel Collaborative Filtering Algorithm[J]. 数据分析与知识发现, 2020, 4(6): 15-21.
[7] Su Qing,Chen Sizhao,Wu Weimin,Li Xiaomei,Huang Tiankuan. Personalized Recommendation Model Based on Collaborative Filtering Algorithm of Learning Situation[J]. 数据分析与知识发现, 2020, 4(5): 105-117.
[8] Zheng Songyin,Tan Guoxin,Shi Zhongchao. Recommending Tourism Attractions Based on Segmented User Groups and Time Contexts[J]. 数据分析与知识发现, 2020, 4(5): 92-104.
[9] Ding Yong,Chen Xi,Jiang Cuiqing,Wang Zhao. Predicting Online Ratings with Network Representation Learning and XGBoost[J]. 数据分析与知识发现, 2020, 4(11): 52-62.
[10] Chuang Hong,He Li,Lihui Peng,Yiming Xu. Evaluating Information Services of Online Health Q&A Platform[J]. 数据分析与知识发现, 2019, 3(8): 41-52.
[11] Fusen Jiao,Shuqing Li. Collaborative Filtering Recommendation Based on Item Quality and User Ratings[J]. 数据分析与知识发现, 2019, 3(8): 62-67.
[12] Shan Li,Yehui Yao,Hao Li,Jie Liu,Karmapemo. ISA Biclustering Algorithm for Group Recommendation[J]. 数据分析与知识发现, 2019, 3(8): 77-87.
[13] Yong Zhang,Shuqing Li,Yongshang Cheng. Mining Algorithm for Weighted Association Rules Based on Frequency Effective Length[J]. 数据分析与知识发现, 2019, 3(7): 85-93.
[14] Quan Lu,Anqi Zhu,Jiyue Zhang,Jing Chen. Research on User Information Requirement in Chinese Network Health Community: Taking Tumor-forum Data of Qiuyi as an Example[J]. 数据分析与知识发现, 2019, 3(4): 22-32.
[15] Dongmei Mu,Hui Fa,Ping Wang,Jing Sun. Research on Disease Risk Factors on Structural Equation Model[J]. 数据分析与知识发现, 2019, 3(4): 80-89.
  Copyright © 2016 Data Analysis and Knowledge Discovery   Tel/Fax:(010)82626611-6626,82624938